• Title/Summary/Keyword: Wake angle

Search Result 193, Processing Time 0.024 seconds

Flow Control of Turbulent Wake Behind a Circular Cylinder Using a Self-adjusting Rod (자율 제어봉을 이용한 실린더 후류의 유동제어에 관한 연구)

  • Lim Hee Chang;Kam Dong Hyuk;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.467-470
    • /
    • 2002
  • The offects of a small control rod (d=3mm) located near a main circular cylinder on the drag reduction and wake structure modification were investigated. The location of the small control rod mounted on a rod-like spring is self-adjusting according to the wake structure far optimal control of the flow around the main cylinder. The experiments were carried out at the Reynolds numbers based on the cylinder diameter (D=50mm) in the range $Re_{D}=1{\times}10^4{\~}6{\times}10^4$. Mean velocity and turbulent statistics were measured with varying the angle along the cylinder circumference ${\Theta}=15^{\circ},\;30^{\circ},\;45^{\circ}$ and the distance between the main and control rods L =0.7, 1. Compared with the bare cylinder, the main circular cylinder with the fixed and self-adjusting rods reduced drag coefficient by $10{\%}$ at the angle of ${\Theta}=45^{\circ}$. For the main cylinder with self-adjusting rot as the Reynolds numbers increase, the streamwise mean velocity is increased, however, the turbulence intensity is decreased. In addition, the control rods tested in this study are effective at higher Reynolds number than at lower Reynolds number.

  • PDF

Two-Dimensional Mechanism of Hovering Flight by Flapping Wings (날개짓에 의한 공중정지비행의 이차원 메카니즘)

  • Kim, Do-Kyun;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.759-764
    • /
    • 2003
  • Numerical simulations are conducted to investigate the mechanism of hovering flight by single flapping wing, and to examine the effect of the phase difference between the fore- and hindwings in hovering flight by two flapping wings. The numerical method used is based on an immersed boundary method in Cartesian coordinates. The Reynolds number considered is Re=150 based on the maximum translational velocity and chord length of the wing. For single flapping wing, the stroke plane angles are $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ and the downstroke angles of attack are varied for each stroke angle. Results show that for each stroke plane angle, there is an optimal angle of attack to maximize the vertical force. Below the stroke angle of $60^{\circ}$, wake capturing reduces the negative vertical force during the upstroke. For two flapping wings, The phase lags of the hindwing are $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The amplitudes of the stroke are 2.5 and 4.0 times the chord length at each phase lag. The results show that maximum vertical force is generated when the phase lag is zero, and the amplitude of the vertical force is minimum at the phase lag of $180^{\circ}$.

  • PDF

Aerodynamic Stability Assessment of PWS and CFRC Hanger Ropes for Suspension Bridge by Experiments (현수교 PWS 및 CFRC 행어로프의 내풍안정성 실험 평가)

  • Park, Hyung-Ghee;Kang, Seon-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.21-30
    • /
    • 2008
  • In this study, to evaluate the aerodynamic stability of suspension bridge hanger ropes, the wind tunnel tests are carried out. It is found that the vortex induced vibration is detected only in single PE-coated PWS cable case. And the wake galloping is occurred in twin cables spaced $3\sim6$ cable diameters of cable center to center when the incidence angle of wind is only zero degree. In case of other incidence angles of wind except zero degree, the wake galloping or the wake flutter are showed in twin cables even outside range of the bounds of $3\sim6$ cable diameters. CFRC cable shows very stable for the twin cables regardless of the distance between two cables, and also for various incidence angles of wind. Thus the characteristic of CFRC rope overwhelms one of PWS cable in aerodynamic stability.

Flow Structure of the Wake behind an Elliptic Cylinder Close to a Free Surface

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1784-1793
    • /
    • 2001
  • The flow fields around an elliptic cylinder of axis ratio AR=2 adjacent to a free surface were investigated experimentally using a water channel. The main objective is to understand the effect of the free surface on the flow structure in the near-wake. The flow fields were measured by varying the depth of cylinder submergence, for each experimental condition, 350 velocity fields were measured using a single-frame PIV system and ensemble-averaged to obtain the spatial distribution of turbulent statics. For small submergence depths a large-scale eddy structure was observed in the near-wake, causing a reverse flow near the free surface, downstream of the cylinder. As the depth of cylinder submergence was increased, the flow speed in the gap region between the upper surface of the cylinder and the free surface increased and formed a substantial jet flow. The general flow structure of the elliptic cylinder is similar to previous results for a circular cylinder submerged near to a free surface. However, the width of the wake and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder are smaller tan those for a circular cylinder.

  • PDF

The Flow Analysis of Supercavitating Cascade by Nonlinear Theory (비선형이론에 의한 Supercavitation 익렬의 유동해석)

  • Pak, Ee-Tong;Hwang, Yoon
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • In this study comparison of experiment results with the computed results of linear theory and nonlinear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade using nonlinear theory, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. The results compared linear theory and nonlinear theory with the experiment results of the study are as follows: The tolerances of nonlinear theory were larger than those of linear theory in case of ${\alpha}<10^{\circ}$. Moreover the computational range of attack angles could be expanded from ${\alpha}=10^{\circ}$ to ${\alpha}=25^{\circ}$, the flow field of supercavitating cascade could be analyzed in the condition which the wake thickness and the length of cavity are a variable. The shapes of cavity were changed sensitively according to various variable such as attack angles, pitches and wake thickness, and the pressure distribution of hydrofoil surface was identical almost disregarding wake thickness but changed largely according to attack angle and the length of cavity. Lift coefficient and drag coefficient were reduced according to increasing of wake thickness but the influences of wake thickness were very little in the situation of small pitch and long cavity.

  • PDF

Experimental characterization of the lateral and near-wake flow for the BARC configuration

  • Pasqualetto, Elena;Lunghi, Gianmarco;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.101-113
    • /
    • 2022
  • We experimentally investigate the high-Reynolds flow around a rectangular cylinder of aspect ratio 5:1. This configuration is the object of the international BARC benchmark. Wind tunnel tests have been carried out for the flow at zero angle of attack and a Reynolds number, based on the crossflow cylinder length and on the freestream velocity, equal, to 40 000. Velocity measurements are obtained by using hot-wire anemometry along 50 different cross-flow traverses on the cylinder side and in the near wake. Differential pressure measurements are acquired on multiple streamwise sections of the model. The obtained measurements are in a good agreement with the state-of-the-art experiments. For the first time among the several contributions to the BARC benchmark, detailed flow measurements are acquired in the region near the cylinder side and in the near-wake flow. The edges and the thickness of the shear layers detaching from the upstream edges are derived from velocity measurements. Furthermore, we compute the flow frequencies characterizing the roll-up of the shear layers, the evolution of vortical structures near the cylinder side and the vortex shedding in the wake.

A Study on Aerodynamic Properties of Two-Dimensional Rectangular Prism in Various Angles of Attack (다양한 영각을 갖는 2차원 장방형 각주의 공력특성에 관한 연구)

  • 송근택;김유택;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.485-492
    • /
    • 2002
  • The present study is aimed to reveal macroscopic aerodynamic characteristics of two-dimensional rectangular prisms with three aspect ratios(D/H=1, 2 and 3) and six angles of attack($0^{circ}, 10^{circ}, 13.5^{circ}, 20^{circ}, 30^{circ} and 45^{\circ}$). The Reynolds number is fixed as $1\times10^4$. The SOLA-based revised finite difference method for the conservation form on irregular grid was adopted as a new numerical method. Instantaneous flow patterns at $45^{\circ}$ in case of D/H=2 and D/H=3 show larger asymmetric wake development which is closely related to the sharp decrease of drag coefficients at higher angles of attack range. Vorticity propagation into enlarged wake region is conjectured to be responsible for this phenomenon. The Strouhal number is found to be sensitive to the angle of attack at higher aspect ratios(D/H=2 and 3).

A Study on the Performance of the Wing In Ground Effect by a Vortex Lattice Method (와류 격자법에 의한 지면효과익의 성능 연구)

  • Jeong, Gwang-Hyo;Jang, Jong-Hui;Jeon, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.87-96
    • /
    • 1998
  • A numerical simulation was done to investigate the performance of thin wings in close vicinity to ground. The simulation is based on Vortex Lattice Method(VLM) and freely deforming wake elements are taken into account for a sudden acceleration case. The parameters covered in the simulation are angle of attack, aspect ratio, ground clearance, sweep angle and taper ratio. In addition, the effect of the wing endplate on the ground effect is included. The wing sections used for present computations are uncambered, cambered and S-types. The present computational results are compared with other published computational results and experimental data.

  • PDF

Experimental Study on the Flow around a Circular Cylinder with Tripping Wires (트리핑 와이어가 설치된 원형실린더 주위의 유동현상 연구)

  • 류병남;부정숙;조민기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.413-422
    • /
    • 2004
  • The flow characteristic in the wake around a circular cylinder with tripping wires, which was set in constant distance, was experimentally investigated in the uniform flow, Re=2.92$\times10^4$. The measurement of velocity vector and pressure distribution are carried out various angles of tripping wires in the range of $50^(\circ)$ to $80^(\circ)$ with $10^(\circ)$ interval. The results show that velocity profiles and pressure distributions are different with angles of tripping wires. The drag of the circular cylinder was decreased about 60% maximum when tripping wires' angle was $50^(\circ)$. The lowest reduction of the velocity and wake width was occurred by coanda effect when the angle was $60^(\circ)$, and the vortex shedding periodicity become rare at the same time.

A Study on the Flame Structure and Stabilization in a Divergent Flow (확대관 흐름에 있어서 화염의 안정성 및 구조에 관한 연구)

  • 최병륜;이중성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.512-518
    • /
    • 1994
  • An experimental study is made on turbulent diffusion flames stabilized by a circular cylinder in a divergence flow. In this paper, stabilization characteristics and flame structure are examined by varying the divergence angle of duct and position of a circular cylinder. The fuel used is a commercial grade gaseous propane injected by two slit of rod. It is found that the positive pressure gradient greatly influences the eddy structure behind the rod. and that two different kinds of combustion patterns exist at the blowoff limit depending on the divergent angle of duct. They are distinguished by their wake structures: one associated with Karman vortex shedding, the other without it. Also, the blowoff velocity in the former is found to be higher than in the later.