• 제목/요약/키워드: Wake Vortex

검색결과 456건 처리시간 0.028초

Development of a new free wake model using finite vortex element for a horizontal axis wind turbine

  • Shin, Hyungki;Park, Jiwoong;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.17-27
    • /
    • 2017
  • The treatment of rotor wake has been a critical issue in the field of the rotor aerodynamics. This paper presents a new free wake model for the unsteady analysis for a wind turbine. A blade-wake-tower interaction is major source of unsteady aerodynamic loading and noise on the wind turbine. However, this interaction can not be considered in conventional free wake model. Thus, the free wake model named Finite Vortex Element (FVE hereafter) was devised in order to consider the interaction effects. In this new free wake model, the wake-tower interaction was described by dividing one vortex filament into two vortex filaments, when the vortex filament collided with a tower. Each divided vortex filaments were remodeled to make vortex ring and horseshoe vortex to satisfy Kelvin's circulation theorem and Helmholtz's vortex theorem. This model was then used to predict aerodynamic load and wake geometry for the horizontal axis wind turbine. The results of the FVE model were compared with those of the conventional free wake model and the experimental results of SNU wind tunnel test and NREL wind tunnel test under various inflow velocity and yaw condition. The result of the FVE model showed better correlation with experimental data. It was certain that the tower interaction has a strong effect on the unsteady aerodynamic load of blades. Thus, the tower interaction needs to be taken into account for the unsteady load prediction. As a result, this research shows a potential of the FVE for an efficient and versatile numerical tool for unsteady loading analysis of a wind turbine.

잔류내 응집 구조 와류의 생성에 관한 연구 (A Study of Generation of Coherent Vortex in Late Wake)

  • 이승수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.443-446
    • /
    • 2002
  • Wake downstream of an object in the stratified flow has been of long-standing interest in fluid dynamics because of its similarity to geophysical flow over topographical terrains and more recently, concerns about the wake left behind a body moving through the ocean thermocline. Decades of studies of geophysical flow have unveiled that the flow downstream of obstacles in stratified flow consists of attached wake and strong internal waves, or separated, fluctuating wake and persistent late wakes, all of which depend on the flow conditions. Among unique and interesting characteristics of the stratified flow past obstacles is the generation of coherent vortex structure in the late wake far downstream of the object. Without the density stratification, the flow field downstream becomes undisturbed after relatively fast diminishing of the near wake. However, no matter how small the stratification is, the flow field downstream self-develops coherent vortex structures even after diminishing of the near wake. This paper present a computational approach to simulate the generation mechanism of the coherent vortex and analysis of the vortical structure.

  • PDF

잔류내 응집 와류의 수치 해석 (Numerical Study of Coherent Vortex in Late Wake Downstream of a Sphere in Weakly Stratified Fluid)

  • 이승수;이영규;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1863-1868
    • /
    • 2003
  • Decades of studies of geophysical flow have unveiled that the flow downstream of obstacles in stratified flow consists of attached wake and strong internal waves, or separated, fluctuating wake and persistent late wakes. Among unique and interesting characteristics of the stratified flow past obstacles is the generation of coherent vortex the late wake far downstream of the object. Unlike in homogeneous fluid, the flow field downstream self-develops coherent vortex even after diminishing of the near wake, no matter how small the stratification is. This paper present a computational approach to simulate the generation of the coherent vortex structure in late wake of a moving sphere submerged in weakly stratified fluid. The results are in consistent with several experimental observations and the vortex stretching mechanism is employed to explain the process of coherence.

  • PDF

Numerical Prediction of Rotor Tip-Vortex Roll-Up in Axial Flights by Using a Time-Marching Free-Wake Method

  • Chung, Ki-Hoon;Na, Seon-Uk;Jeon, Wan-Ho;Lee, Duck-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.1-12
    • /
    • 2000
  • The wake geometries of a two-bladed rotor in axial flights using a time-marching free-wake method without a non-physical model of the far wake are calculated. The computed free-wake geometries of AH-1G model rotor in climb flight are compared with the experimental visualization results. The time-marching free-wake method can predict the behavior of the tip vortex and the wake roil-up phenomena with remarkable agreements. Tip vortices shed from the two-bladed rotor can interact with each other significantly. The interaction consists of a turn of the tip vortex from one blade rolling around the tip vortex from the other. Wake expansion of wake geometries in radial direction after the contraction is a result of adjacent tip vortices begging to pair together and spiral about each other. Detailed numerical results show regular pairing phenomenon in the climb flights, the hover at high angle of attack and slow descent flight too. On the contrary, unstable motions of wake are observed numerically in the hover at low angle of attack and fast descent flight. It is because of the inherent wake instability and blade-vortex-interaction rather then the effect of recirculation due to the experimental equipment.

  • PDF

진동 유동장에서 유동공진에 의한 실린더 후류의 와류 특성 변화 (Change of Vortex Dynamics in the Cylinder Wake by the Lock-on to Oscillatory Incident Flow)

  • 김원태;성재용;유정열
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1645-1654
    • /
    • 2003
  • When vortex shedding is locked-on to a single frequency oscillatory flow, the variations of vortex dynamics are investigated using a time-resolved PIV system. Wake regions of recirculation and vortex formation, dynamic behavior of the shed vortices and the Reynolds stress fields are measured in the wake-transition regime at the Reynolds number 360. In the lock-on state, reduction of the wake region occurs and flow energy distributed downstream moves upstream being concentrated near the cylinder base. To observe the dynamic behavior of the shed vortices, the trajectory of the vortex center extended to the inside of the wake bubble is considered, which describes well the formation and evolution processes. The Reynolds stresses and their contributions to overall force balance on the wake bubble manifest the increase of the drag force by the lock-on.

약한 밀도 층상류에서 발생하는 물체 후류의 잔류와 응집 와류의 형성 (Formation of Coherent Vortices in Late Wake Downstream of an Object in Weakly Stratified Fluid)

  • 이승수;김학선
    • 대한조선학회논문집
    • /
    • 제48권5호
    • /
    • pp.414-420
    • /
    • 2011
  • Decades of studies of geophysical flow have unveiled that the flow downstream of obstacles in stratified flow consists of attached wake and strong gravity waves, or separated, fluctuating wake and persistent late wakes. Among unique and interesting characteristics of the stratified flow past obstacles is the generation of coherent vortex in the late wake far downstream of the object. Unlike in homogeneous fluid, the flow field downstream self-develops coherent vortex even after diminishing of the near wake, no matter how small the stratification is. This paper present a computational approach to simulate the generation of the coherent vortex structure in the late wake of a moving sphere submerged in weakly stratified fluid. The results are in consistent with several experimental observations and the vortex stretching mechanism is employed to explain the process of coherence.

포텐셜 유동을 기반으로 한 풍력 터빈 블레이드의 공력 해석 및 후류 예측 기법에 관한 연구 (Potential Based Prediction Methods of Aerodynamic and Wake Simulation of Wind Turbine Blade)

  • 김호건;신형기;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.414-419
    • /
    • 2007
  • This paper describes the prediction of aerodynamic performance and wake of HAWT in normal and yawed flow operation using potential based methods. In order to analyze aerodynamic performance of wind turbine WINFAS program is used, which is based on VLM(Vortex Lattice Method) and CVC(Constant vorticity contour) Free wake model. Some problems of CVC vortex filament method are investigated arid to improve these problems vortex ring wake are introduced in behalf of CVC vortex filament. The prediction results using the vortex lattice wake are compared to experimental data.

  • PDF

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • 제7권4호
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

ADS-B 기반 항공기 후류분리 (ADS-B based Wake Vortex Separation)

  • 김정식;임동헌
    • 한국항공운항학회:학술대회논문집
    • /
    • 한국항공운항학회 2015년도 추계학술대회
    • /
    • pp.63-67
    • /
    • 2015
  • 항공기는 공중에서 양력을 발생시키는 과정에서 wake vortex를 생성하며, 항공기 중량과 항공기 주위의 기상(특히 바람 vector)에 따라 wake vortex의 크기와 그 소산속도가 결정된다. 이러한 Raw data 정보는 항공기에 장착된 FMS와 Sensor를 통해 수집될 수 있으며, 이를 ADS-B를 이용하여 지상관제기관과 주변항공기에 전파하면, 실시간으로 매우 정확한 후류크기와 영향범위를 확인할 수 있고, 이로써 보다 안전하고 효율적인 항공기 후류분리가 가능할 것으로 볼 수 있다. 본 자료는, 이러한 맥락에서 ICAO(ASBU)의 후류분리기준 축소를 통한 활주로사용증진 동향과, RTCA DO-260B의 부록(V) "Potential wake vortex and Arrival management ADS-B Application" 요지를 소개한다.

  • PDF

와류 격자법에 의한 수평축 풍력터빈의 공기역학적 성능예측 (Aerodynamic Performance Prediction of Horizontal Axis Wind Turbine by Vortex Lattice Method)

  • 유능수
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1264-1271
    • /
    • 1990
  • 본 연구에서는 회전 깃(rotor blade)을 폭 방향과 시위방향으로 많은 평면 페 널(panel)들로 나누어 이에 말굽쇠 형 화류(horseshoe vortex)를 분포시키는 양력면 (lifting surface)으로 대치하고 후류는 깃상의 순환(circulation)분포에 의해 그 크 기가 결정되는 와도(vorticity)를 와류격자로 대치하는 와류격자법(Vortex Lattice Method`VLM)을 사용하여 HAWT의 공기역학적 성능 예측을 시도하였다. 그리고 후류의 형상은 근 후류(near wake)와 원후류(far wake)로 나누어 근 후류는 깃의 후연(trail- ing edge)에서의 속도를 갖고 와선(vortex line)이 움직이게 하여 결정하였고 원 후류 는 반무한대 원형화류 실린더(semi-infinite circular vortex cylinder)로 취급하여 결정하였다.