• Title/Summary/Keyword: Wake Flow Field

검색결과 239건 처리시간 0.021초

Numerical simulation of propeller exciting force induced by milling-shape ice

  • Wang, C.;Li, X.;Chang, X.;Xiong, W.P.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.294-306
    • /
    • 2019
  • On the basis of the Computational Fluid Dynamics technique (CFD) combined with the overlap grid method, this paper establishes a numerical simulation method to study the problem of ice-propeller interaction in viscous flow and carries out a simulation forecast of the hydrodynamic performance of an ice-class propeller and flow characteristics when in the proximity of milling-shape ice (i.e., an ice block with a groove cut by a high-speed revolving propeller). We use a trimmed mesh in the entire calculation domain and use the overlap grid method to transfer information between the domains of propeller rotation calculation and ice-surface computing. The grid is refined in the narrow gap between the ice and propeller to ensure the accuracy of the flow field. Comparison with the results of the experiment reveals that the error of the hydrodynamic performance is within 5%. This confirms the feasibility of the calculation method. In this paper, we calculate the exciting force of the propeller, analyze the time domain of the exciting force, and obtain the curve of the frequency domain using a Fourier transform of the time-domain curve of the exciting force. The existence of milling-shape ice before the propeller can greatly disturb the wake flow field. Unlike in open water, the propeller bearing capacity shows a downward trend in three stages, and fluctuating pressure is more disordered near the ice.

Flight Dynamics Analyses of a Propeller-Driven Airplane (II): Building a High-Fidelity Mathematical Model and Applications

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.356-365
    • /
    • 2014
  • This paper is the second in a series and aims to build a high-fidelity mathematical model for a propeller-driven airplane using the propeller's aerodynamics and inertial models, as developed in the first paper. It focuses on aerodynamic models for the fuselage, the main wing, and the stabilizers under the influence of the wake trailed from the propeller. For this, application of the vortex lattice method is proposed to reflect the propeller's wake effect on those aerodynamic surfaces. By considering the maneuvering flight states and the flow field generated by the propeller wake, the induced velocity at any point on the aerodynamic surfaces can be computed for general flight conditions. Thus, strip theory is well suited to predict the distribution of air loads over wing components and the viscous flow effect can be duly considered using the 2D aerodynamic coefficients for the airfoils used in each wing. These approaches are implemented in building a high-fidelity mathematical model for a propeller-driven airplane. Flight dynamic analysis modules for the trim, linearization, and simulation analyses were developed using the proposed techniques. The flight test results for a series of maneuvering flights with a scaled model were used for comparison with those obtained using the flight dynamics analysis modules to validate the usefulness of the present approaches. The resulting good correlations between the two data sets demonstrate that the flight characteristics of the propeller-driven airplane can be analyzed effectively through the integrated framework with the propeller and airframe aerodynamic models proposed in this study.

CALMET 및 ENVI-MET를 이용한 산업단지 입지에 따른 국지 바람장 분석 (An Analysis of Local Wind Field by Location of Industrial Complex using CALMET and ENVI-MET)

  • 송동웅
    • 환경영향평가
    • /
    • 제21권3호
    • /
    • pp.417-429
    • /
    • 2012
  • In this study, a diagnostic wind model, CALMET and a micrometeorological numerical model, ENVI-MET were used to analyze the wind field in and out of the site designated for the industrial complex around Buron-myeon, Wonju, Gangwon-do. The results of modeling with CALMET showed that the air flow in industrial complex was little affected by the surrounding terrain. And the result of wind field analysis with ENVI-MET showed there are turbulent air flows such as cavity and wake around structures in the industrial complex, which can cause high-air pollution. Therefore, it is necessary to design the industrial complex considering the wind path according to wind directions.

연소 유동장 내 액체 연료 액적간의 상호작용에 대한 수치적 연구 (Numerical Study on the Interaction of Liquid Fuel Droplets in the Reacting Flow Field)

  • 조종표;김호영;박심수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.63-71
    • /
    • 2001
  • The objective of this work is to elucidate the details of two key factors dominating the droplet buring behavior in sprays : droplet-droplet interaction and convective flow. The combustion of a one-dimensional linear droplet array with a convective flow has been studied. A one-step, second order model was employed to simulate the chemical reaction in the combustion process. Results for droplet arrays burning at two Reynolds numbers, 50 and 100, two horizontal droplet spacings, 5 and 11 radii, and two vertical droplet spacing, 2 and 4 radii, were obtained. The results indicate the droplet burning behavior is affected by Reynolds number, droplet-droplet spacing, and the relative location of droplets in the array. Droplet-droplet interaction was found to be strong for arrays with smaller droplet spacing.

  • PDF

DNS of Interaction Phenomena in Particle-Laden Turbulence

  • Kajishima T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.9-11
    • /
    • 2003
  • A homogeneous flow field including more than 2000 spherical particles was directly simulated. Particles are settling by gravity with the Reynolds number ranging from 50 to 300, based on diameter and slip velocity. Particular attention was focused on the distribution of particles. The Reynolds-number dependence, influences of particle rotation and loading ratio, and the dynamics of particle clusters are discussed. In the higher Reynolds number case, the wake attraction causes particle clusters and the average drag coefficient decreases significantly. Non-rotating particles maintain cluster structure and rotating ones moves randomly in the horizontal direction. It is because of the difference in the direction of the lift force.

  • PDF

파넬법을 이용한 자동차의 외형설계 (Design of automobile body shape by using panel method)

  • 이동호;강신영
    • 오토저널
    • /
    • 제6권4호
    • /
    • pp.54-61
    • /
    • 1984
  • Numerical calculation of the flow field past a passenger car was carried out by using a panel method with a small computer of 5Mbyte memory size. The shape of car body was simplified and reconstructed by 2180 panels on which a constant strength sink (or source) was distributed. The separation of flow from the surface and the wake flow were not considered in the calculation because of the computer memory limitation. All of the results of calculation were presented by using a 3-dimensional computer graphics. In spite of small memory size of computer, generally good agreements were obtained, except the separated region, from the comparison of pressure distribution between numerical analysis and wind tunnel experiment with 1/5 scaled model.

  • PDF

표면에 정방형 딤플을 가진 원주의 항력저감 특성 (Drag Reduction Characteristics of Cylinder Having Square Dimpled Surface)

  • 노기덕;박지태;진윤식;여광수
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.129-134
    • /
    • 2001
  • The drag reduction of the cylinder having square dimpled surface was studied by the measuring the drag force acting on the cylinder. The level of the drag reduction was changed by the arrangement shape of the square grooves and Reynolds number. The drag of the cylinder was reduced about 28% with proper arrangement of square grooves. The flow field around the cylinder having grooves at the minimum drag was visualized by using post color ink in order to see the influence of the grooves. In this case, the separation points were sifted rearward and the wake region was smaller than that of the smooth cylinder.

  • PDF

표면에 정방형 딤플을 가진 원추의 항력저감 특성 (Drag Reduction Characteristics of Cylinder Having Square Dimpled Surface)

  • 노기덕;박지태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.233-239
    • /
    • 2002
  • The drag reduction of the cylinder having square dimpled surface was studied by the measuring the drag force acting on the cylinder. The level of the drag reduction was changed by the arrangement shape of the square grooves and Reynolds number. The drag of the cylinder was reduced about 28% with proper arrangement of square grooves. The flow field around the cylinder having grooves at the minimum drag was visualized by using post color ink in order to see the influence of the grooves. In this case, the separation points were silted rearward and the wake region was smaller than that of the smooth cylinder.

자유수면에 접한 원형실린더 주위의 유동계측 (Flow Characteristics around a Circular Cylinder according as the Depth from Free Surface)

  • 손창배;김옥석;오우준;이창우;이경우
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2010년도 춘계학술대회
    • /
    • pp.389-391
    • /
    • 2010
  • 자유수면에 접한 원형실린더는 후류유동에 변화를 초래한다. 이를 위해 희류수조의 수면하 깊이를 변화시키며 $Re=1.0\times10^3$에서 순간유동장을 계측하여 실험을 통하여 그 영향을 조사하였다. 계측된 결과는 상호상관 PIV기법을 이용하여 원형실린더의 2차원 유동특성을 알아보기 위하여 상호 비교하였다. 자유수면에 의한 원형실린더 주변유동은 후류에 영향을 미친다. 특히 d=l.0D의 경우에 있어서 경계층은 전체 영역에 걸쳐 분포하였다. 원형실린더의 박리점과 경계층은 수심의 깊이에 따라 제어가 가능하였다.

  • PDF

자유수면에 인접한 원형실린더형 몰수체 주위의 유동특성에 관한 연구 (On the Flow Characteristics around a Circular Cylinder according as the Water Depth from the Free Surface)

  • 김옥석;손창배;이경우
    • 한국항해항만학회지
    • /
    • 제34권5호
    • /
    • pp.331-336
    • /
    • 2010
  • 원형실린더가 균일한 유입유동에서 자유수면 으로부터 깊이를 달리했을 경우 박리점, 경계층 및 칼만 와열의 주기 등의 변화로 인하여 시스템 전체 에너지에 변화를 초래한다. 본 연구에서는 원형실린더의 침수 깊이를 변화시키며 $Re=1.0{\times}10^3$에서 유동장을 계측하였다. 2차원 그레이 레벨 상호상관 PIV기법을 이용하여 원형실린더 주위의 유동특성을 알아보기 위하여 상호 비교하는 방법을 적용하였다. 자유수면의 점성과 마찰에 의해 발생하는 원형실린더 주변유동은 경계층을 변화시키고 후류유동에 교란을 일으킨다. 특히, 몰수체의 깊이가 d=1.0D의 경우에 있어서 경계층의 변화가 후류로 길게 형성되었다. 원형실린더의 깊이가 d=1.5D에서부터 자유수면의 영향이 감소하고 칼만 와열이 발달하였다.