• 제목/요약/키워드: Wake Effects

검색결과 311건 처리시간 0.032초

Effects of Single Treatment of Anti-Dementia Drugs on Sleep-Wake Patterns in Rats

  • Jung, Ji-Young;Roh, Moo-Taek;Ko, Kyung-Kyun;Jang, Hwan-Soo;Lee, Seong-Ryong;Ha, Jeoung-Hee;Jang, Il-Sung;Lee, Ho-Won;Lee, Maan-Gee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권4호
    • /
    • pp.231-236
    • /
    • 2012
  • We studied the effects of acetylcholinesterase inhibitors, donepezil and galantamine, and an N-methyl-D-aspartate (NMDA) receptor blocker, memantine, on sleep-wake architecture in rats. Screw electrodes were chronically implanted into the frontal and parietal cortex for the electroencephalography (EEG). EEG was recorded with a bio-potential amplifier for 8 h from 09:30 to 17:30. Vibration was recorded to monitor animal activity with a vibration measuring device. Sleep-wake states such as wake (W), slow-wave sleep (S) and paradoxical or rapid eye movement sleep (P), were scored every 10 sec by an experimenter. We measured mean episode duration and number of episode to determine which factor sleep disturbance was attributed to. Donepezil and memantine showed a significant increase in total W duration and decreases in total S and P duration and delta activity. Memantine showed increases in sleep latency and motor activity. Changes of S and P duration in memantine were attributed from changes of mean episode duration. Galantamine had little effect on sleep architecture. From these results, it is showed that galantamine may be an anti-dementia drug that does not cause sleep disturbances and memantine may be a drug that causes severe sleep disturbance.

후류영향을 고려한 상반회전 풍력발전 시스템의 공력성능 예측에 관한 연구 (Aerodynamic Performance Prediction of a Counter-rotating Wind Turbine System with Wake Effect)

  • 동경민;정성남
    • 한국항공우주학회지
    • /
    • 제30권7호
    • /
    • pp.20-28
    • /
    • 2002
  • 본 연구에서는 로터의 후류 효과 및 실속 후 특성을 고려하여 30kW급 상반회전 풍차 시스템에 대한 공력성능 해석을 수행하였다. 기본 공력이론은 모멘텀 이론과 2차원 준정상 공기력 이론을 통합한 형태를 사용하였다. 로터의 후류영향을 고려하기 위해 축소형 풍차 블레이드 모델에 대한 풍동시험 결과를 적절히 이용하였으며, 이로부터 보조로터를 지난 후류의 축속도 및 각속도 성분을 결정하였다. 또한, Glauert의 최적 작동판 이론과 Prandtl의 익단손실 효과를 고려하여 30kW급 풍차 시스템에 대한 최적 시위 및 비틀림 분포를 구하였으며, 기존의 단일 로터 시스템과의 공력성능 비교를 통하여 상반회전 풍차 시스템의 효율성 및 우수성을 입증하고자 하였다.

Effects of diffraction in regular head waves on added resistance and wake using CFD

  • Lee, Cheol-Min;Park, Sung-Chul;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.736-749
    • /
    • 2019
  • This paper employs computational tools to investigate the diffraction effects in regular head waves on the added resistance and wake on the propeller plane. The objective ships are a 66,000 DWT bulk carrier and a 3,600 TEU container ship. Fixed and free to heave and pitch conditions at design speed have been taken into account. Two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved using the finite volume method; and a realizable k-ε model has been applied for the turbulent closure. The free surface is obtained by solving a VOF equation. The computations are carried out at the same scale of the model tests. Grid and numerical wave damping zones are applied to remove unwanted wave reflection at the boundaries. The computational results are analyzed using the Fourier series. The added resistances in waves at the free condition are higher than those at the fixed condition, which are nearly constant for all wavelengths. The wake velocity in waves is higher than that in calm water, and is accelerated where the wave crest locates on the propeller plane. When the vertical motion at the stern goes upward, the wake velocity also accelerated.

풍력터빈 후류 유동특성 측정 데이터를 이용한 Eddy Viscosity 및 Lange 후류모델의 예측 정확도 검증 (Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor)

  • 전상현;고영준;김범석;허종철
    • 대한기계학회논문집B
    • /
    • 제40권1호
    • /
    • pp.21-29
    • /
    • 2016
  • 상업용 풍력발전단지에 설치된 기상 탑의 측정데이터와 풍력터빈의 SCADA(Supervisory Control and data Acquisition) 데이터를 이용하여 풍력터빈의 후류영향을 분석하고 후류 풍속저감 예측을 위한 eddy viscosity 모델 및 난류강도 예측을 위한 Lange 모델의 계산값과 비교하였다. 후류영향 분석결과, 자유단(free stream) 풍속이 낮을수록 풍력터빈 후류에서의 풍속 감소율은 증가하였으며 후류 난류강도 역시 자유단 풍속이 낮아질수록 증가하는 특징을 보였다. Eddy viscosity 모델에 의해 예측된 풍력터빈 후류중심에서의 풍속 감소율은 측정값에 비해 과대 예측되었으며 Lange 모델에 의한 후류 난류강도 예측은 실측값과 유사하게 예측되고 있음을 보였다.

연령에 따른 비행시차 후의 수면-각성주기 변화 (The Changes of Sleep-Wake Cycle from Jet-Lag by Age)

  • 김인;이승환;서광윤
    • 수면정신생리
    • /
    • 제3권2호
    • /
    • pp.18-31
    • /
    • 1996
  • Jet-lag can be defined as the cumulative physiological and psychological effects of rapid air travel across multiple time zones. Many reports have suggested that age-related changes in sleep reflect fundamental changes in the circadian system and in significant declines in slow wave sleep. Jet lag is a dramatic situation in which the changes of the phase of circadian process and homeostatic process of sleep occur. Thus the authors evaluatead the changes of sleep-wake cycle from jet lag by age. Thirty-eight healthy travellers were studied for 3 days before and 7 days after jet-flights across seven to ten time zone. They were aged 19-70, They trareled eastbound, Seoul to North America (USA, Canada). Sleep onset time, wake-up time, sleep latency, awakening frequency on night sleep, awakening duration on night sleep, sleepiness at wake-up and nap length were evaluated. Our results suggest that by the 7 to 10 time zone shift, the old age group was significantly influenced in sleep-wake cycles. The date on which subjective physical condition was recovered was $6.23{\pm}83$ day after arrivals for old age group, while for young and middle age group, $4.46{\pm}1.50$ day and $4.83{\pm}1.52$ day, respectively. In old age group, sleep onset time was later than baselines and could not recover untill 7th day. But in other groups, the recovery was within 5th day. Nap dura fion was longer in old age group through jet lag than younger age group. In other parameters, there was no definite difference among three age groups. Our results suggested that the old age was significantly influenced by the disharmony between internal body clock and sleep-wake cycle needed at the travel site. Thus we proved that recovery ability from jet lag was age-dependent as well as travelling direction-dependent. To demonstrate more definite evidence, EEG monitoring and staging of sleep were funthun encouraged.

  • PDF

Frequency Effects of Upstream Wake and Blade Interaction on the Unsteady Boundary Layer Flow

  • Kang, Dong-Jin;Bae, Sang-Su
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1303-1313
    • /
    • 2002
  • Effects of the reduced frequency of upstream wake on downstream unsteady boundary layer flow were simulated by using a Wavier-Stokes code. The Wavier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds number turbulence model to close the momentum equations. The geometry used in this paper is the MIT flapping foil experimental set-up and the reduced frequency of the upstream wake is varied in the range of 0.91 to 10.86 to study its effect on the unsteady boundary layer flow. Numerical solutions show that they can be divided into two categories. One is so called the low frequency solution, and behaves quite similar to a Stokes layer. Its characteristics is found to be quite similar to those due to either a temporal or spatial wave. The low frequency solutions are observed clearly when the reduced frequency is smaller than 3.26. The other one is the high frequency solution. It is observed for the reduced frequency larger than 7.24. It shows a sudden shift of the phase angle of the unsteady velocity around the edge of the boundary layer. The shift of phase angle is about 180 degree, and leads to separation of the boundary layer flow from corresponding outer flow. The high frequency solution shows the characteristics of a temporal wave whose wave length is half of the upstream frequency. This characteristics of the high frequency solution is found to be caused by the strong interaction between unsteady vortices. This strong interaction also leads to destroy of the upstream wake strips inside the viscous sublayer as well as the buffer layer.

진동하는 NACA 4412 에어포일 근접후류에서의 레이놀즈수 효과 1: 평균속도장 (Reynolds Number Effects on the Near-Wake of an Oscillating Naca 4412 Airfoil, Part 1 : Mean Velocity Field)

  • 장조원
    • 한국항공우주학회지
    • /
    • 제31권7호
    • /
    • pp.15-25
    • /
    • 2003
  • 진동하는 에어포일의 근접후류 특성을 조사하기 위한 실험적 연구가 수행되었다. NACA 4412에어포일은 1/4 시위 지점을 중심으로 조화적으로 피칭운동을 하고, 순간받음각이 +6$^{\circ}$에서 -6$^{\circ}$까지 진동하도록 하였다. 진동하는 에어포일의 근접후류에서의 평균속도를 측정하기 위하여 열선풍속계를 사용하였다. 본 연구에서 자유류의 속도는 3.4, 12.4, 26.2 m/s이다. 이러한 자유류 속도에 따른 시위 레이놀즈수는 $R_N$=5.3${\times}10^4$, 1.9${\times}10^5$, 4.1${\times}10^5$이고, 무차원 진동수는 K=0.1이다. 레이놀즈수가 진동하는 에어포일의 근접후류에 미치는 영향을 나타내기 위하여 축방향 위상평균 속도분포를 제시하였다. 본 측정에서 모든 경우에 속도결손은 $R_N$=5.3${\times}10^4$인 경우에 아주 크고, $R_N$=1.9${\times}10^5$과 4.1${\times}10^5$인 경우에는 작다는 것을 관찰 할 수 있었다. 이와 같이 위상평균속도의 커다란 차이는 $R_N$=5.3${\times}10^4$과 1.9${\times}10^5$ 사이에 있다는 것을 관찰하였다. 따라서 본 연구는 진동하는 에어포일의 근접후류에서의 레이놀즈수의 임계값이 5.3${\times}10^4$에서 1.9${\times}10^5$ 범위에 존재한다는 것을 보여준다.

The turbulent wake of a square prism with wavy faces

  • Lin, Y.F.;Bai, H.L.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • 제23권2호
    • /
    • pp.127-142
    • /
    • 2016
  • Aerodynamic effects, such as drag force and flow-induced vibration (FIV), on civil engineering structures can be minimized by optimally modifying the structure shape. This work investigates the turbulent wake of a square prism with its faces modified into a sinusoidal wave along the spanwise direction using three-dimensional large eddy simulation (LES) and particle image velocimetry (PIV) techniques at Reynolds number $Re_{Dm}$ = 16,500-22,000, based on the nominal width ($D_m$) of the prism and free-stream velocity ($U_{\infty}$). Two arrangements are considered: (i) the top and bottom faces of the prism are shaped into the sinusoidal waves (termed as WSP-A), and (ii) the front and rear faces are modified into the sinusoidal waves (WSP-B). The sinusoidal waves have a wavelength of $6D_m$ and an amplitude of $0.15D_m$. It has been found that the wavy faces lead to more three-dimensional free shear layers in the near wake than the flat faces (smooth square prism). As a result, the roll-up of shear layers is postponed. Furthermore, the near-wake vortical structures exhibit dominant periodic variations along the spanwise direction; the minimum (i.e., saddle) and maximum (i.e., node) cross-sections of the modified prisms have narrow and wide wakes, respectively. The wake recirculation bubble of the modified prism is wider and longer, compared with its smooth counterpart, thus resulting in a significant drag reduction and fluctuating lift suppression (up to 8.7% and 78.2%, respectively, for the case of WSP-A). Multiple dominant frequencies of vortex shedding, which are distinct from that of the smooth prism, are detected in the near wake of the wavy prisms. The present study may shed light on the understanding of the underlying physical mechanisms of FIV control, in terms of passive modification of the bluff-body shape.

비행시차(jet lag)에 의한 여행객의 수면-각성 주기의 변화 (The Changes of Traveller's Sleep-Wake Cycles by Jet Lag)

  • 이승환;김인;서광윤
    • 수면정신생리
    • /
    • 제2권2호
    • /
    • pp.146-155
    • /
    • 1995
  • Jet lag can be defined as the cumulative physiological and psychological effects of rapid air travel across multiple time zone. The consequences of jet lag include fatigue, general malaise, sleep disturbances, and reductions of cognitive and psychomotor performance, all of which have been documented in experimental biological and air crew personnel studies. Thus authors tried to study the jet lag of natural travellers by modified self reporting sleep log. Total 61 healthy travellers was studied for 3 days before and 7 days after jet-flights across seven to ten time zone. The eastbound travelling group was 38 persons, aged 19 -70 and westbound travelling group was 23 persons, aged 13 - 69. Sleep onset time, wake-up time, sleep latency, awakening frequency on night sleep, awakening duration on night sleep, sleepiness at wake-up and nap length were evaluated. Our results suggested that the 7 to 10 time zone shift gave significant influence to traveller's sleep-wake cycles. The date which subjective physical condition was recovered on was $5.16{\pm}1.50$ day after arrivals for eastbound, while for westbound, $4.91{\pm}1.62$ day. In eastbound travelling, sleep onset time became later than baselines and could not recover until 7th day. But in westbound, it became earlier than baseline and could recover until 6th day. The mean score of 24-hour sleepiness was greater in eastboumd than westbound. Therefore the eastbound travelling caused more sleep-wake cycle disturbance and daytime dysfunction than westbound travelling. In other parameters, there was no definite difference between east and westbound. From our results, it was suggested that the symptom severity of jet lag was dependent on the travelling direction. To demonstrate more definite evidence, large sized data collections and comparision by age difference were needed.

  • PDF

Wake-induced vibration of the hanger of a suspension bridge: Field measurements and theoretical modeling

  • Li, Shouying;Deng, Yangchen;Lei, Xu;Wu, Teng;Chen, Zhengqing
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.169-180
    • /
    • 2019
  • The underlying mechanism of the wind-induced vibration of the hangers of the suspension bridges is still not fully understood at present and hence is comprehensively examined in this study. More specifically, a series of field measurements on the No. 2 hanger of the Xihoumen Bridge was first carefully conducted. Large amplitude vibrations of the hanger were found and the oscillation amplitude of the leeward cable was obviously larger than that of the windward cables. Furthermore, the trajectory of the leeward cable was close to an ellipse, which agreed well with the major characteristics of wake-induced vibration. Then, a theoretical model for the wake-induced vibration based on a 3-D continuous cable was established. To obtain the responses of the leeward cable, the finite difference method (FDM) was adopted to numerically solve the established motion equation. Finally, numerical simulations by using the structural parameters of the No. 2 hanger of the Xihoumen Bridge were carried out within the spatial range of $4{\leq}X{\leq}10$ and $0{\leq}Y{\leq}4$ with a uniform interval of ${\Delta}X={\Delta}Y=0.25$. The results obtained from numerical simulations agreed well with the main features obtained from the field observations on the Xihoumen Bridge. This observation indicates that the wake-induced vibration might be one of the reasons for the hanger oscillation of the suspension bridge. In addition, the effects of damping ratio and windward cable movement on the wake-induced vibration of the leeward cable were numerically investigated.