• Title/Summary/Keyword: Wafer cutting

Search Result 63, Processing Time 0.024 seconds

Development of Internal Laser Scribing System for Cutting of Sapphire Wafer in LED Chip Fabrication Processes (LED 칩 제조용 사파이어 웨이퍼 절단을 위한 내부 레이저 스크라이빙 시스템 개발)

  • Kim, Jong-Su;Ryu, Byung-So;Kim, Ki-Beom;Song, Ki-Hyeok;Kim, Byung-Chan;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.104-110
    • /
    • 2015
  • LED has added value as a lighting source in the illuminating industry because of its high efficiency and low power consumption. In LED production processes, the chip cutting process, which mainly uses a scribing process with a laser has an effect on quality and productivity of LED. This scribing process causes problems like heat deformation, decreasing strength. The inner laser method, which makes a void in wafer and induces self-cracking, can overcome these problems. In this paper, cutting sapphire wafer for fabricating LED chip using the inner laser scribing process is proposed and evaluated. The aim is to settle basic experiment conditions, determine parameters of cutting, and analyze the characteristics of cutting by means of experimentation.

The Parameter Determination of a Scribing Machine for Semiconductor Wafer (반도체 웨이퍼용 스크라이빙 머신의 파라메터 결정)

  • 차영엽;최범식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.218-225
    • /
    • 2003
  • The general dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. However, inferior goods may be made under the influence of several parameters in dicing process such as blade, wafer, cutting water and cutting conditions. Moreover we can not apply this dicing method to a GaN wafer, because the GaN wafer is harder than other wafers such as SiO$_2$, GaAs, GaAsP, and AlGaAs. In order to overcome this problem, development of a new dicing process and determination of dicing parameters are necessary. This paper describes determination of several parameters - scribing depth, scribing force, scriber inclined angle, scribing speed, and factor for scriber replacement - for a new dicing machine using a scriber.

Scribing and cutting a sapphire wafer by laser-induced plasma-assisted ablation

  • Lee, Jong-Moo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.224-225
    • /
    • 2000
  • Transparent and hard materials such as sapphire are used for many industrial applications as optical windows, hard materials on mechanical contact against abrasion, and substrate materials for opto-electronic semiconductor devices such as blue LED and blue LD etc. The materials should be cut along the proper shapes possible to be used for each application. In case of blue LED, the blue LED wafer should be cut to thousands of blue LED pieces at the final stage of the manufacturing process. The process of cutting the wafer is usually divided into two steps. The wafer is scribed along the proper shapes in the first step. It is inserted between transparent flexible sheets for easy handling. And then, it is broken and split in the next step. Harder materials such as diamonds are usually used to scribe the wafer, while it has a problem of low depth of scribing and abrasion of the harder material itself. The low depth of scribing can induce failure in breaking the wafer along the scribed line. It was also known that the expensive diamond tip should be replaced frequently for the abrasion. (omitted)

  • PDF

Wafer Dicing State Monitoring by Signal Processing (신호처리를 이용한 웨이퍼 다이싱 상태 모니터링)

  • 고경용;차영엽;최범식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.70-75
    • /
    • 2000
  • After the patterning and probe process of wafer have been achieved, the dicing process is necessary to separate chips from a wafer. The dicing process cuts a wafer to lengthwise and crosswise direction to make many chips by using narrow circular rotating diamond blade. But inferior goods are made under the influence of complex dicing environment such as blade, wafer, cutting water and cutting conditions. This paper describes a monitoring algorithm using feature extraction in order to find out an instant of vibration signal change when bad dicing appears. The algorithm is composed of two steps: feature extraction and decision. In the feature extraction, two features processed from vibration signal which is acquired by accelerometer attached on blade head are proposed. In the decision. a threshold method is adopted to classify the dicing process into normal and abnormal dicing. Experiment have been performed for GaAs semiconductor wafer. Based upon observation of the experimental results, the proposed scheme shown a good accuracy of classification performance by which the inferior goods decreased from 35.2% to 12.8%.

  • PDF

A study on the surface characteristics of diamond wire-sawn silicon wafer for photovoltaic application (다이아몬드 코팅 와이어로 가공된 태양전지용 실리콘 웨이퍼의 표면 특성에 관한 연구)

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.225-229
    • /
    • 2011
  • Most of the silicon cutting methods using the multi-wire with the slurry injection have been used for wafers of the crystalline solar cell. But the productivity of slurry injection cutting type falls due to low cutting speeds. Also, the direct contact with the metal wire and silicon block increases the concentration of metallic impurities in the wafer's surface. In addition, the abrasive silicon carbide (SiC) generates pollutants. And production costs are rising because it does not re-use the worn wire. On the other hand, the productivity of the cutting method using the diamond coated wire is about 2 times faster than the slurry injection cutting type. Also, the continuous cutting using the used wire of low wear is possible. And this is a big advantage for reduced production costs. Therefore, the cutting method of the diamond coated wire is more efficient than the slurry injection cutting technique. In this study, each cutting type is analyzed using the surface characteristics of the solar wafer and will describe the effects of the manufacturing process of the solar cell. Finally, we will suggest improvement methods of the solar cell process for using the diamond cutting type wafer.

Monitoring of Wafer Dicing State by Using Back Propagation Algorithm (역전파 알고리즘을 이용한 웨이퍼의 다이싱 상태 모니터링)

  • 고경용;차영엽;최범식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.486-491
    • /
    • 2000
  • The dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. But inferior goods are made under the influence of several parameters in dicing such as blade, wafer, cutting water and cutting conditions. This paper describes a monitoring algorithm using neural network in order to find out an instant of vibration signal change when bad dicing appears. The algorithm is composed of two steps: feature extraction and decision. In the feature extraction, five features processed from vibration signal which is acquired by accelerometer attached on blade head are proposed. In the decision, back-propagation neural network is adopted to classify the dicing process into normal and abnormal dicing, and normal and damaged blade. Experiments have been performed for GaAs semiconductor wafer in the case of normal/abnormal dicing and normal/damaged blade. Based upon observation of the experimental results, the proposed scheme shown has a good accuracy of classification performance by which the inferior goods decreased from 35.2% to 6.5%.

  • PDF

Vibration Analysis of Wafer Cutting Machine and its Experimental Verification (웨이퍼 가공기의 진동 해석 및 실험적 검증)

  • 김명업;임경화;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.22-30
    • /
    • 1992
  • The free vibrations of the outer-clamped spinning annular disk which simulates a wafer cutting machine are investigated. The effects of the initial tension, the centrifugal force and outer-fixture extension caused by spinning on the vibration characteristics of the disk are considered. The modal parameters of the disk are calculated by using Galerkin's method as the rotating speed and initial tension are varied. Laboratory experiments are also performed with a rotating and stationary disk, and, it is found that experimental and simulation results are in good agreement.

Effects of Forced Self Driving Function in Silicon Wafer Polishing Head on the Planarization of Polished Wafer Surfaces (실리콘 웨이퍼 연마헤드의 강제구동 방식이 웨이퍼 연마 평탄도에 미치는 영향 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.13-17
    • /
    • 2014
  • Since the semiconductor manufacturing requires the silicon wafers with extraordinary degree of surface flatness, the surface polishing of wafers from ingot cutting is an important process for deciding surface quality of wafers. The present study introduces the development of wafer polishing equipment and, especially, the wafer polishing head that employs the forced self-driving of installed silicon wafer as well as the wax wafer mounting technique. A series of wafer polishing tests have been carried out to investigate the effects of self-driving function in wafer polishing head. The test results for wafer planarization showed that the LLS counts and SBIR of polished wafer surfaces were generally improved by adopting the self-driven polishing head in wafer polishing stations.