• Title/Summary/Keyword: WTA(Weapon Target Assignment)

Search Result 13, Processing Time 0.019 seconds

Combinatorial Optimization Model of Air Strike Packages based on Target Groups (표적군 기반 공격 편대군 조합 최적화 모형)

  • Cho, Sanghyeon;Lee, Moongul;Jang, Youngbai
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.6
    • /
    • pp.386-394
    • /
    • 2016
  • In this research, in order to optimize the multi-objective function effectively, we suggested the optimization model to maximize the total destruction of ground targets and minimize the total damage of aircrafts and cost of air munitions by using goal programming. To satisfy the various variables and constraints of this mathematical model, the concept of air strike package is applied. As a consequence, effective attack can be possible by identifying the prior ground targets more quickly. This study can contribute to maximize the ROK air force's combat power and preservation of high value air asset in the war.

Analysis on Time Performance of Intercept System for Engagement Plan of Missile Defense System (미사일방어체계의 교전계획 수립을 위한 요격체계의 시간성능인자 분석)

  • Hong, Seong-Wan;Song, Jin-Young;Chang, Young-Keun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.93-105
    • /
    • 2019
  • In order to establish an effective engagement plan of the missile defense system, both spatial and temporal performance analysis of the intercept system should be performed. However, research on existing missile defense systems has been mainly focused on spatial performance. In this study, time performance factors are defined through the composition and operational concept of missile defense system, and the target ballistic missile interception process is presented as integrated timeline through ballistic missile model and radar model. We also proposed an algorithm for deriving time performance. Simulation results confirm that the time performance factors can be used in the engagement planning for multi-engagement through the example of engagement planning.

Random Forest Method and Simulation-based Effect Analysis for Real-time Target Re-designation in Missile Flight (유도탄의 실시간 표적 재지정을 위한 랜덤 포레스트 기법과 시뮬레이션 기반 효과 분석)

  • Lee, Han-Kang;Jang, Jae-Yeon;Ahn, Jae-Min;Kim, Chang-Ouk
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.35-48
    • /
    • 2018
  • The study of air defense against North Korean tactical ballistic missiles (TBM) should consider the rapidly changing battlefield environment. The study for target re-designation for intercept missiles enables effective operation of friendly defensive assets as well as responses to dynamic battlefield. The researches that have been conducted so far do not represent real-time dynamic battlefield situation because the hit probability for the TBM, which plays an important role in the decision making process, is fixed. Therefore, this study proposes a target re-designation algorithm that makes decision based on hit probability which considers real-time field environment. The proposed method contains a trajectory prediction model that predicts the expected trajectory of the TBM from the current position and velocity information by using random forest and moving window. The predicted hit probability can be calculated through the trajectory prediction model and the simulator of the intercept missile, and the calculated hit probability becomes the decision criterion of the target re-designation algorithm for the missile. In the experiment, the validity of the methodology used in the TBM trajectory prediction model was verified and the superiority of using the hit probability through the proposed model in the target re-designation decision making process was validated.