• Title/Summary/Keyword: WT

Search Result 10,297, Processing Time 0.036 seconds

A Study on the Reaction Characteristics of Rare Earth Oxides with Lithium Oxide in LiCl Molten Salt (LiCl 용융염 중에서 희토류 산화물과 산화리튬의 반응특성에 관한 연구)

  • 오승철;박성빈;김상수;도재범;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.447-452
    • /
    • 2003
  • We had clarified the reactions of the rare earth oxides($RE_2O_3$) with lithium oxide produced in lithium reduction process of oxide fuels. Oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium reacted with lithium oxide in the higher concentration than the respective certain critical concentration of lithium oxide and formed complex oxides($LiREO_2$). The critical lithium oxide concentrations for the formation of complex oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium oxide were respectively 0.1 wt%, 1.9 wt%, 5.3 wt%, 5.0 wt%, 3.0 wt%, 3.9 wt% 2.9 wt%, 2.6 wt% and 0.3 wt%. Cerium and lanthanum oxide did not react with lithium oxide. These complex oxides obtained from experiments have limited solubility in lithium chloride at $650^{\circ}C$.

  • PDF

Grain Refining and Age Hardening of Mg-Zn Alloys by Addition of Cu and Si (Cu 및 Si첨가에 의한 Mg-Zn합금계의 입자미세화 및 시효경화)

  • Hwang, Jin-Hwan;Nam, Tae-Hyeon;An, In-Seop;Kim, Yu-Gyeong;Heo, Gyeong-Cheol;Heo, Bo-Yeong
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.682-689
    • /
    • 1995
  • In order to refine the grain size of Mg-Zn alloy 0.5 to 6wt.%Cu or Si elements were added. Alloy ingot was made under vacuum atmosphere of 4 ${\times}$ 10$\^$-4/ Torr in the quartz tube coated by BN. Grain size and hardness were measured after solution treatment for 8 hours at 435$^{\circ}C$. Optimal condition for grain size refining effect was obtained at the minimum composition of 2wt.%Cu or 1.5wt.%Si addition to Mg-6wt%Zn alloy. Age hardening behavior was experimented at the optimal compositions of the Mg-6wt.%Zn, Mg-6wt.% Zn-2wt.%Cu and Mg-6wt.% Zn-1.5wt.%Si. The hardness increment due to fine grain size was higher at the Mg-Zn-Cu alloy system, but that due to age hardening was higher at the Mg-Zn-Si alloy system.

  • PDF

A Study on Characteristics of Alloy Materials through Reproduction Experiment of High-tin Bronze Mirror with Geometric Designs (고주석 청동정문경(靑銅精文鏡)의 재현실험을 통한 합금재료의 특성 연구)

  • Lee, In Kyeong;Jo, Young Hoon;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.508-517
    • /
    • 2019
  • This study analyzed on alloys and by-product samples produced through the reproduction experiment of bronze mirror with geometric designs. The alloy ratio used in the first and second reproduction experiments was based on the analysis results of bronze mirror with geometric designs(Cu 61.68%, Sn 32.25%, Pb 5.46%) which is the national treasure No. 141. As a result of portable X-ray fluorescence analysis on the raw materials used in the reproduction experiment, the contents of copper raw materials were 98.85 wt% for Cu, tin raw materials were 99.03 wt% for Sn, and lead raw materials were 70.19 wt% for Pb, and 21.81 wt% for Sn. Sn and Pb were added 5 wt% more considering the evaporation amount of tin and lead during alloy melting. The result produced by the first reproduction experiment were 58.75 wt% for Cu, 36.87 wt% for Sn, 4.39 wt% for Pb, and the other result produced by the second reproduction experiment were 58.66 wt% for Cu, 35.89 wt% for Sn, and 5.50 wt% for Pb. The composition of the components was about 3.00 wt% in Cu and Sn respectively, and the microstructure was similar to the previous studies because the δ phase was observed mainly. The results of this study will be used as basic data for the materialistic characteristics of ancient bronze mirror in the future.

Crystallization of Solder Glasses for Ceramic Package (세라믹 Package 봉착용 유리의 결정화에 관한 연구)

  • Son, Myeong-Mo;Park, Hi-Chan;Lee, Hun-Su;Gang, Won-Ho
    • Korean Journal of Materials Research
    • /
    • v.1 no.4
    • /
    • pp.206-213
    • /
    • 1991
  • The crystallized solder glasses with the low melting temperature for electronic package were prepared with the compositions of 77-80wt% PbO, 4.5-6wt% ZnO, 7.5-8.5wt% $B_2O_3$, 1-2wt% CaO, and 0.5-2.0wt% $P_2O_5$ containing 3-7wt% $TiO_2$. The Characterization of the solder glasses were studied using DTA, SEM and XRD. Frit containing 3wt% $TiO_2$ had crytallzation temperature range of $420-440^{\circ}C$. The major crystalline phase was identified as $2PbO{\cdot}ZnO{\cdot}B_2O_3$ by X-ray diffraction. Frits containing 4 wt% $TiO_2$ consisted of crysalline Phases of $PbTiO_3$ and $2PbO{\cdot}ZnO{\cdot}B_2O_3$ in the temperature range of $420-440^{\circ}C$, When g1ass frit containing 5wt% $TiO_2$ were heat-treated in the temperature range of $440-460^{\circ}C$, major crytalline phase was perovskite lead titanate.

  • PDF

A Study on Unburned Refractory for Ladle -Especially for Sling mass- (부소성 Ladle용 내화물에 관한 연구 -Sling mass의 특성을 중심으로-)

  • 박금철;한문희
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.4
    • /
    • pp.213-223
    • /
    • 1978
  • The purpsoe of this study was to produce domestic stamping materials; sling mass which could be used as unburned refractory for iron melt'ladle. Batch compositions were based on Belgian Ladelite; mineral compositions were composed of 84 wt% of quartz and 16 wt% of clay, and particle sizes were divided into 12 wt% of 1410/297㎛, 18wt% 297/149㎛, 20wt% of 149/74㎛, 11wt% 74/44㎛ and 39wt% 44㎛ under. The effect of variable batch compositions were also investigated such as substitution of pyrophylite or industrial grade alumina for quartz and of zircon for portion of quartz and clay, increase of clay and addition on sericite. Samples were pressed at 100kg/㎠ with 7.4wt% of water or 7.4wt% of 4 wt% PVA solution. Dried and Fired properties of samples such as linear shrinkage, apparent porosity, modulus of rupture, refractoriness and corrosion resistance to blast furnace slag were investigated. The results are summarized as follows. 1. Dried samples are shrinked, but fired at 700-1400℃ expanded. Samples fired at 700-1000℃ and 1200-1400℃ tended to expand with incresing of firing temperature, but fired at 1000-1200℃ tended to shrink with increase of firing temperature. 2. Apparent porosity of samples fired at 700℃ is increased, but fired at 1200-1400℃ decreased with increasing of firing temperature. 3. Modulus of rupture of samples fired at 700℃ is decreased, but fired at above 700℃ increased with increasment of firing temperature. 4. Dried samples with 7.4 wt% of 4 wt% PVA solution better improve modulus of rupture than with 7.4 wt% of water, but the firing strength of the sampels fired at 700-1000℃ is showed reversely. 5. In quartz-clay system, mineral phases of samples fired at above 1200℃ are consisted of α-quartz, α-cristobalite and mullite. Respectively as firing temperature was rising up, intensity of α-cristobalite and mullite is in creased. 6. Quartz-Kibushi clay system, Kimcheun quartz(substitutuion of portion of industrial grade alumina for quartz) Hampyeung clay system and pyrophyllite-clay system are better in corrosion resistance to blast furnace slag than burned pyrophyllite brick. 7. 84 wt% of pyrophyllite-16wt% of clay system is superior in modulus of rupture and corrosion resistance to blast furnace slag to 84 wt% of quartz-16 wt% of clay system.

  • PDF

Mechanical Property Evaluation of WC-Co-Mo2C Hard Materials by a Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 WC-Co-Mo2C 소재의 기계적 특성평가)

  • Kim, Ju-Hun;Park, Hyun-Kuk
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.392-396
    • /
    • 2021
  • Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 ㎛, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.

Classification of Shear Strength according to Breccia Content in Fault Core (단층각력 함량에 따른 전단강도의 분류)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Seo, Yong-Seok
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.167-181
    • /
    • 2020
  • Analysis of variance (ANOVA) and multiple comparison analysis were performed for shear strengths categorized by breccia content of 5 wt.% (Case-I), 10 wt.%, (Case-II) and 15 wt.% (Case-III) in fault cores. The relationship between breccia contetnt and shear strength was quantitatively classified by calculating the mean and standard deviation of shear strength for each population in each case and then the grouping the breccia contents that had a statistically similar effect on the dispersion of shear strength. As a result, shear strength was clearly classified into group 1 (breccia content of 0-15 wt.%) and group 2 and 3 (breccia coantent of 15-30 wt.% and 30 wt.% or more) in Case-III. Shear strength of the standard line at breccia content of 15 wt.% were determined to be 43.6 kPa, 77.6 kPa, and 118.6 kPa at each normal stress (54 kPa, 108 kPa, and 162 kPa), respectively. In addition, the distribution range of cohesions is 0-43.6 kPa at breccia content of 15 wt.% or less, and 0-70.0 kPa at 15 wt.% or more. Distribution range of friction angles is 0-45.7 ° at breccia content of 15 wt.% or less, and 16.7-57.5 ° at 15 wt.% or more.

Effect of Sc, Sr Elements on Eutectic Mg2Si Modification and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy (주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 공정 Mg2Si 개량과 주조특성에 미치는 Sc, Sr 첨가원소의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.147-154
    • /
    • 2015
  • The effects of Sc and Sr elements on the modification of the eutectic $Mg_2Si$ phase and the castability were investigated in the Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurements of the cooling curve and microstructure observations were performed to analyze the additional effects of Sc and Sr minor elements during the solidification process. A prominent effect found on the modification of the eutectic $Mg_2Si$ phase with additions of the Sr and Sc elements. Here, a fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident with an addition of Sc element up to 0.2 wt%. The growth temperature of the eutectic $Mg_2Si$ phase decreased and the effect on the modification of the eutectic $Mg_2Si$ phase increased with the addition of Sr element up to 0.02 wt%. The addition of 0.02wt%Sr had the strongest effect on the modification of the eutectic $Mg_2Si$ phase, and the resulting microstructure of the eutectic $Mg_2Si$ phase was found to have a fibrous morphology with a decreased aspect ratio and an increased modification ratio. Fluidity and shrinkage tests were conducted to evaluate the castability of the alloy. The addition of 0.02wt%Sr effectively increased the fluidity of the alloy, while an addition of Sc did not show any effect compared to when nothing was added. The maximum filling length was recorded for 0.01wt%TiB-0.02wt%Sr owing to the effect of the fine ${\alpha}$-Al grains. The macro-shrinkage ratio decreased, while the micro-shrinkage ratio increased with the addition of various eutectic modifiers. The highest ratio of micro-shrinkage was recorded for the 0.02wt%Sr condition. However, the total shrinkage ratio was nearly identical regardless of the amounts added in this study.

Mechanical properties of bamboo-epoxy composites a structural application

  • Biswas, Sandhyarani
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.221-231
    • /
    • 2012
  • In this study, the physical and mechanical properties of bamboo fiber reinforced epoxy composites were studied. Composites were fabricated using short bamboo fiber at four different fiber loading (0 wt%, 15 wt%, 30 wt% and 45 wt%). It has been observed that few properties increases significantly with respect to fiber loading, however properties like void fraction increases from 1.71% to 5.69% with the increase in fiber loading. Hence, in order to reduce the void fraction, improve hardness and other mechanical properties silicon carbide (SiC) filler is added in bamboo fiber reinforced epoxy composites at four different weight percentages (0 wt%, 5 wt%, 10 wt% and 15 wt%) by keeping fiber loading constant (45 wt%). The significant improvement of hardness (from 46 to 57 Hv) at 15 wt%SiC, tensile strength (from 10.48 to 13.44 MPa) at 10 wt% SiC, flexural strength (from 19.93 to 29.53 MPa) at 5 wt%SiC and reduction of void fraction (from 5.69 to 3.91%) at 5 wt%SiC is observed. The results of this study indicate that using particulate filled bamboo fiber reinforced epoxy composites could successfully develop a composite material in terms of high strength and rigidity for light weight applications compared to conventional bamboo composites. Finally, SEM studies were carried out to evaluate fibre/matrix interactions.

Synergy Effect of Chlorhexidine and Essential Oils on Antimicrobial Activity in Dental Impression Materials (치과용 인상재에서의 클로르헥시딘과 에센셜 오일의 항균성능에 대한 상승효과)

  • Lee, Kwang-Rae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.240-244
    • /
    • 2018
  • There is growing concern about cross infection among the patients to patients, patients to staffs, and tools to patients in healthcare facilities, especially in dentistry. In this study, the most widely used dental impression materials were prepared and the synergy effect of Chlorhexidine and essential oil on antimicrobial activity was examined in the impression materials. Chlorhexidine concentration of 0.1 wt% and 0.5 wt% showed no antimicrobial activity on Escherichia coli (E. coli) and Candida albicans. At 1.0 wt% Chlorhexidine, 0% of E. coli and 34.7% of Candida albicans were survived. Bergamot (Essential oil) concentration of 0.5 wt% and 1.0 wt% showed no antimicrobial activity on E. coli. At 2.0 wt% Bergamot oil, 71.9% of E. coli were survived. Tea tree oil (Essential oil) of 0.5 wt% showed no antimicrobial activity on E. coli. At 1.0 wt% Tea tree oil, 11.2% of E. coli was survived. At 2.0 wt% Tea tree oil, no E. coli was survived. However, no E. coli was survived at the concentration of 0.8 wt% Bergamot with 0.3 wt% Chlorhexidine. At the concentration of 0.8 wt% Tea Tree oil with 0.3 wt% Chlorhexidine, 1.3% of E. coli were survived. The experimental results showed that the synergy effects between Chlorhexidine and essential oils on antimicrobial activity were prominent.