• Title/Summary/Keyword: WSN security

Search Result 126, Processing Time 0.032 seconds

A Lightweight Authentication and Key Agreement Protocol in Wireless Sensor Networks (무선센서 네트워크에서 경량화된 인증과 키 동의 프로토콜)

  • Yoon, Sin-Sook;Ha, Jae-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.41-51
    • /
    • 2009
  • Recently, there are many researches on security to remove vulnerability which is caused by wireless communication in wireless sensor networks. To guarantee secure communication, we should basically provide key management for each node, mutual authentication and key agreement protocol between two nodes. Although many protocols are presented to supply these security services, some of them require plentiful storage memory, powerful computation and communication capacity. In this paper, we propose a lightweight and efficient authentication and key agreement protocol between two sensor nodes, which is an enhanced version of Juang's scheme. In Juang's protocol, sensor node's information used to share a secret key should be transmitted to registration center via a base station. On the contrary, since node's information in our protocol is transmitted up to only base station, the proposed scheme can decrease computation and communication cost for establishing the shared key between two nodes.

  • PDF

A Group Key Management Scheme for WSN Based on Lagrange Interpolation Polynomial Characteristic

  • Wang, Xiaogang;Shi, Weiren;Liu, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3690-3713
    • /
    • 2019
  • According to the main group key management schemes logical key hierarchy (LKH), exclusion basis systems (EBS) and other group key schemes are limited in network structure, collusion attack, high energy consumption, and the single point of failure, this paper presents a group key management scheme for wireless sensor networks based on Lagrange interpolation polynomial characteristic (AGKMS). That Chinese remainder theorem is turned into a Lagrange interpolation polynomial based on the function property of Chinese remainder theorem firstly. And then the base station (BS) generates a Lagrange interpolation polynomial function f(x) and turns it to be a mix-function f(x)' based on the key information m(i) of node i. In the end, node i can obtain the group key K by receiving the message f(m(i))' from the cluster head node j. The analysis results of safety performance show that AGKMS has good network security, key independence, anti-capture, low storage cost, low computation cost, and good scalability.

On the Need for Efficient Load Balancing in Large-scale RPL Networks with Multi-Sink Topologies

  • Abdullah, Maram;Alsukayti, Ibrahim;Alreshoodi, Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.212-218
    • /
    • 2021
  • Low-power and Lossy Networks (LLNs) have become the common network infrastructure for a wide scope of Internet of Things (IoT) applications. For efficient routing in LLNs, IETF provides a standard solution, namely the IPv6 Routing Protocol for LLNs (RPL). It enables effective interconnectivity with IP networks and flexibly can meet the different application requirements of IoT deployments. However, it still suffers from different open issues, particularly in large-scale setups. These include the node unreachability problem which leads to increasing routing losses at RPL sink nodes. It is a result of the event of memory overflow at LLNs devices due to their limited hardware capabilities. Although this can be alleviated by the establishment of multi-sink topologies, RPL still lacks the support for effective load balancing among multiple sinks. In this paper, we address the need for an efficient multi-sink load balancing solution to enhance the performance of PRL in large-scale scenarios and alleviate the node unreachability problem. We propose a new RPL objective function, Multi-Sink Load Balancing Objective Function (MSLBOF), and introduce the Memory Utilization metrics. MSLBOF enables each RPL node to perform optimal sink selection in a way that insure better memory utilization and effective load balancing. Evaluation results demonstrate the efficiency of MSLBOF in decreasing packet loss and enhancing network stability, compared to MRHOF in standard RPL.

Review on Energy Efficient Clustering based Routing Protocol

  • Kanu Patel;Hardik Modi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.169-178
    • /
    • 2023
  • Wireless sensor network is wieldy use for IoT application. The sensor node consider as physical device in IoT architecture. This all sensor node are operated with battery so the power consumption is very high during the data communication and low during the sensing the environment. Without proper planning of data communication the network might be dead very early so primary objective of the cluster based routing protocol is to enhance the battery life and run the application for longer time. In this paper we have comprehensive of twenty research paper related with clustering based routing protocol. We have taken basic information, network simulation parameters and performance parameters for the comparison. In particular, we have taken clustering manner, node deployment, scalability, data aggregation, power consumption and implementation cost many more points for the comparison of all 20 protocol. Along with basic information we also consider the network simulation parameters like number of nodes, simulation time, simulator name, initial energy and communication range as well energy consumption, throughput, network lifetime, packet delivery ration, jitter and fault tolerance parameters about the performance parameters. Finally we have summarize the technical aspect and few common parameter must be fulfill or consider for the design energy efficient cluster based routing protocol.

Approximate 3D Localization Mechanism in Wireless Sensor Network (무선 센서 네트워크 환경에서 3차원 근사 위치추적 기법)

  • Shim, Jaeseok;Lim, Yujin;Park, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.614-619
    • /
    • 2014
  • In WSN (Wireless Sensor Networks) based surveillance system, it needs to know the occurrence of events or objects and their locations, because the data have no meaning without location information. Using traditional 2D localization mechanisms provide good accuracy where altitude is fixed. But the mapping the position estimated by 2D localization to the real world can cause an error. Even though 3D localization mechanisms provide better accuracy than 2D localization, they need four reference nodes at least and high processing overhead. In our surveillance system, it is needed to estimate the height of the detected object in order to determine if the object is human. In this paper, we propose a height estimation mechanism which does not require many reference nodes and high complexity. Finally, we verify the performance of our proposed mechanism through various experiments.

An Energy- Efficient Optimal multi-dimensional location, Key and Trust Management Based Secure Routing Protocol for Wireless Sensor Network

  • Mercy, S.Sudha;Mathana, J.M.;Jasmine, J.S.Leena
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3834-3857
    • /
    • 2021
  • The design of cluster-based routing protocols is necessary for Wireless Sensor Networks (WSN). But, due to the lack of features, the traditional methods face issues, especially on unbalanced energy consumption of routing protocol. This work focuses on enhancing the security and energy efficiency of the system by proposing Energy Efficient Based Secure Routing Protocol (EESRP) which integrates trust management, optimization algorithm and key management. Initially, the locations of the deployed nodes are calculated along with their trust values. Here, packet transfer is maintained securely by compiling a Digital Signature Algorithm (DSA) and Elliptic Curve Cryptography (ECC) approach. Finally, trust, key, location and energy parameters are incorporated in Particle Swarm Optimization (PSO) and meta-heuristic based Harmony Search (HS) method to find the secure shortest path. Our results show that the energy consumption of the proposed approach is 1.06mJ during the transmission mode, and 8.69 mJ during the receive mode which is lower than the existing approaches. The average throughput and the average PDR for the attacks are also high with 72 and 62.5 respectively. The significance of the research is its ability to improve the performance metrics of existing work by combining the advantages of different approaches. After simulating the model, the results have been validated with conventional methods with respect to the number of live nodes, energy efficiency, network lifetime, packet loss rate, scalability, and energy consumption of routing protocol.

Compression Method for IPSec over 6LoWPAN

  • Wang, Huqing;Sun, Zhixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1819-1831
    • /
    • 2018
  • This paper focuses on a header compression method for the Authentication Header (AH) and Encapsulation Security Payload (ESP) for application to 6LoWPAN. Based on the context, an extendible compression method is developed by analysing each field of the AH and ESP. The method is carried out by resetting the AH and ESP header compression formats, adding a MOD field, and setting different working modes. Authentication, encryption, and a mixture of certification and encryption are provided as flexible options. In addition, the value of the original IPv6 extensible header ID (EID) field can be retained, while the number of occupied NHC_ID values can be decreased for future extendibility. The experimental results show the feasibility and validity of the current compression method. By comparison with other solutions, the new mechanism is demonstrated to be advantageous in terms of compression ratio, flexibility and extendibility.

An Energy and Coverage Efficient Clustering Method for Wireless Sensor Network (무선 센서 네트워크를 위한 효율적인 에너지와 커버리지 클러스터링 방법)

  • Gong, Ji;Zhang, Kai;Kim, Seung-Hae;Cho, Gi-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06a
    • /
    • pp.261-262
    • /
    • 2008
  • Due to technological advances, the manufacturing of small and low cost of sensors becomes technically and economically feasible. In recent years, an increasing interest in using Wireless Sensor Network (WSN) in various applications, including large scale environment monitoring, battle field surveillance, security management and location tracking. In these applications, hundreds of sensor nodes are left to be unattended to report monitored data to users. Since sensor nodes are placed randomly and sometimes are deployed in underwater. It is impossible to replace batteries often when batteries run out. Therefore, reducing energy consumption is the most important design consideration for sensor networks.

  • PDF

Design and Implementation of RPL-based Distributed MQTT Broker Architecture (RPL 기반 분산 MQTT 브로커 구조 설계 및 구현)

  • An, Hyunseong;Sa, Woojin;Kim, Seungku
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.9
    • /
    • pp.1090-1098
    • /
    • 2018
  • MQTT is a lightweight messaging protocol that can be used for low power IoT devices. The MQTT basically uses single MQTT broker to indirectly share message information between publishers and subscribers. This approach has a weakness in regard to traffic overflow, connection fault, security, etc. In this paper, we propose a distributed MQTT broker architecture that solves the problems in single MQTT broker structure. The distributed MQTT broker architecture is expected to support new application services that cannot be supported by a conventional MQTT architecture. We have designed and implemented a distributed MQTT broker architecture based on the RPL protocol that has been widely used for IoT network. The experiment results show that the proposed MQTT broker architecture represents better publishing/subscribing latency and network stability than the conventional MQTT broker architecture.

Multiregional secure localization using compressive sensing in wireless sensor networks

  • Liu, Chang;Yao, Xiangju;Luo, Juan
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.739-749
    • /
    • 2019
  • Security and accuracy are two issues in the localization of wireless sensor networks (WSNs) that are difficult to balance in hostile indoor environments. Massive numbers of malicious positioning requests may cause the functional failure of an entire WSN. To eliminate the misjudgments caused by malicious nodes, we propose a compressive-sensing-based multiregional secure localization (CSMR_SL) algorithm to reduce the impact of malicious users on secure positioning by considering the resource-constrained nature of WSNs. In CSMR_SL, a multiregion offline mechanism is introduced to identify malicious nodes and a preprocessing procedure is adopted to weight and balance the contributions of anchor nodes. Simulation results show that CSMR_SL may significantly improve robustness against attacks and reduce the influence of indoor environments while maintaining sufficient accuracy levels.