• Title/Summary/Keyword: WSN Memory Management

Search Result 5, Processing Time 0.02 seconds

Optimization Protocol using Load Balancing for Hierarchical Wireless Sensor Network (무선센서네트워크에서 부하 균등화를 위한 클러스터링 최적화 프로토콜)

  • Choi, Hae-Won;Kim, Sang-Jin;Pye, Su-Young;Chang, Chu-Seock
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.419-429
    • /
    • 2013
  • The Wireless sensor network(WSN) consisting of a large number of sensors aims to gather data in a variety of environments. The sensor nodes operate on battery of limited power. so, To extend network life time is major goals of research in the WSN. In this paper, we state the key point of a energy consumption with minimum&load balancing. The proposed protocol guarantee balance of number of cluster member nodes using the node memory threshold and optimization of distribution of cluster head using the optimized clustering method. The results show that the proposed protocol could support the load balancing and high energy efficiency by distributing the clusters with a reasonable number of member nodes. The simulation results show that our schme ensure longer life time in WSN as compare with existing schemes such as LEACH and CBLM.

Secure SLA Management Using Smart Contracts for SDN-Enabled WSN

  • Emre Karakoc;Celal Ceken
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3003-3029
    • /
    • 2023
  • The rapid evolution of the IoT has paved the way for new opportunities in smart city domains, including e-health, smart homes, and precision agriculture. However, this proliferation of services demands effective SLAs between customers and service providers, especially for critical services. Difficulties arise in maintaining the integrity of such agreements, especially in vulnerable wireless environments. This study proposes a novel SLA management model that uses an SDN-Enabled WSN consisting of wireless nodes to interact with smart contracts in a straightforward manner. The proposed model ensures the persistence of network metrics and SLA provisions through smart contracts, eliminating the need for intermediaries to audit payment and compensation procedures. The reliability and verifiability of the data prevents doubts from the contracting parties. To meet the high-performance requirements of the blockchain in the proposed model, low-cost algorithms have been developed for implementing blockchain technology in wireless sensor networks with low-energy and low-capacity nodes. Furthermore, a cryptographic signature control code is generated by wireless nodes using the in-memory private key and the dynamic random key from the smart contract at runtime to prevent tampering with data transmitted over the network. This control code enables the verification of end-to-end data signatures. The efficient generation of dynamic keys at runtime is ensured by the flexible and high-performance infrastructure of the SDN architecture.

Public Key Authentication using(t, n) Threshold Scheme for WSN ((t, n) 임계치 기법을 이용한 센서네트워크에서의 공개키 인증)

  • Kim, Jun-Yop;Kim, Wan-Ju;Lee, Soo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.58-70
    • /
    • 2008
  • Earlier researches on Sensor Networks preferred symmetric key-based authentication schemes in consideration of limitations in network resources. However, recent advancements in cryptographic algorithms and sensor-node manufacturing techniques have opened suggestion to public key-based solutions such as Merkle tree-based schemes. These previous schemes, however, must perform the authentication process one-by-one in hierarchical manner and thus are not fit to be used as primary authentication methods in sensor networks which require mass of multiple authentications at any given time. This paper proposes a new concept of public key-based authentication that can be effectively applied to sensor networks. This scheme is based on exponential distributed data concept, a derivative from Shamir's (t, n) threshold scheme, in which the authentication of neighbouring nodes are done simultaneously while minimising resources of sensor nodes and providing network scalability. The performance advantages of this scheme on memory usage, communication overload and scalability compared to Merkle tree-based authentication are clearly demonstrated using performance analysis.

A Lightweight Authentication and Key Agreement Protocol in Wireless Sensor Networks (무선센서 네트워크에서 경량화된 인증과 키 동의 프로토콜)

  • Yoon, Sin-Sook;Ha, Jae-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.41-51
    • /
    • 2009
  • Recently, there are many researches on security to remove vulnerability which is caused by wireless communication in wireless sensor networks. To guarantee secure communication, we should basically provide key management for each node, mutual authentication and key agreement protocol between two nodes. Although many protocols are presented to supply these security services, some of them require plentiful storage memory, powerful computation and communication capacity. In this paper, we propose a lightweight and efficient authentication and key agreement protocol between two sensor nodes, which is an enhanced version of Juang's scheme. In Juang's protocol, sensor node's information used to share a secret key should be transmitted to registration center via a base station. On the contrary, since node's information in our protocol is transmitted up to only base station, the proposed scheme can decrease computation and communication cost for establishing the shared key between two nodes.

  • PDF

A Study on the memory management techniques using Sensing Data Filtering of Wireless sensor nodes (무선센서노드의 센싱 데이터 필터링을 사용한 메모리 관리 기법에 대한 연구)

  • Kang, Yeon-I;Kim, Hwang-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1633-1639
    • /
    • 2010
  • Recently Wireless sensor networks have been used for many purposes and is active for this study. The various methods to reduce energy consumption, which are actively being studied Wireless sensor network to reduce energy consumption, leading to improve transport efficiency, Cluster can be viewed using the research methods. Cluster method researches consists of a sensor node to the cluster and in among those they take out the Cluster head node and Cluster head node is having collects sensing information of circumferential nodes sensing to sink node transmits. Selected as cluster head sensor nodes so a lot of the energy consumption is used as a cluster head sensor nodes is lose a shorter life span have to be replaced by another sensor node. In this paper, to complement the disadvantages of a cluster-mesh method, proposes to manage memory efficiently about filtering method for sensing data. Filtering method to store the same data sensing unlike traditional methods of data filtering system sensing first sent directly by the hashing algorithm to calculate the hash table to store addresses and Sensing to store data on the calculated address in a manner to avoid duplication occurred later, and sensing data is not duplicated by filtering data to be stored in the hash table is a way.