• Title/Summary/Keyword: WSN(Wireless sensor network)

Search Result 645, Processing Time 0.026 seconds

Fuzzy system and Improved APIT (FIAPIT) combined range-free localization method for WSN

  • Li, Xiaofeng;Chen, Liangfeng;Wang, Jianping;Chu, Zhong;Li, Qiyue;Sun, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2414-2434
    • /
    • 2015
  • Among numerous localization schemes proposed specifically for Wireless Sensor Network (WSN), the range-free localization algorithms based on the received signal strength indication (RSSI) have attracted considerable research interest for their simplicity and low cost. As a typical range-free algorithm, Approximate Point In Triangulation test (APIT) suffers from significant estimation errors due to its theoretical defects and RSSI inaccuracy. To address these problems, a novel localization method called FIAPIT, which is a combination of an improved APIT (IAPIT) and a fuzzy logic system, is proposed. The proposed IAPIT addresses the theoretical defects of APIT in near (it's defined as a point adjacent to a sensor is closer to three vertexes of a triangle area where the sensor resides simultaneously) and far (the opposite case of the near case) cases partly. To compensate for negative effects of RSSI inaccuracy, a fuzzy system, whose logic inference is based on IAPIT, is applied. Finally, the sensor's coordinates are estimated as the weighted average of centers of gravity (COGs) of triangles' intersection areas. Each COG has a different weight inferred by FIAPIT. Numerical simulations were performed to compare four algorithms with varying system parameters. The results show that IAPIT corrects the defects of APIT when adjacent nodes are enough, and FIAPIT is better than others when RSSI is inaccuracy.

A Study on Asynchronous MAC Protocol with Dynamic Preamble Length in Wireless Sensor Networks (WSN에서 프리앰블 다이나믹을 이용한 비동기 MAC 프로토콜 연구)

  • Han, Hyeon-Ho;Hong, Yeong-Pyo;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3563-3570
    • /
    • 2010
  • MAC protocol has been studied for reducing energy consumption in wireless sensor networks. The overhearing and idle In the existing asynchronous MAC Protocol will occur due to unnecessary energy consumption. In this paper, to solve these problems, the Preamble to change the structure of the destination address, the Preamble of the end times, the data including the length of the Preamble and Data Overhearing reduce the length of the Check Interval Data generated according to the presence of the Dynamic Value dynamically adjustable by changing the DPL (Dynamic Preamble Length)-MAC protocol was proposed. Moreover, the existing asynchronous MAC protocol of wireless sensor networks and DPL-MAC protocol proposed in this paper to simulate the energy consumption and latency were assessed in terms of comparative analysis.

A Study on Land Warrior System Design Based on IEEE 802.15.4 (IEEE 802.15.4 기반의 미래병사체계 시스템 설계에 관한 연구)

  • Heo, Jun;Lee, Sang-Jin;Choi, Yong-Hoon;Choi, Hyo-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.5
    • /
    • pp.71-80
    • /
    • 2012
  • In this paper, applications that require low-speed data rate on personal area network to operate the Land Warrior system is proposed. These applications can refer to WSN(wireless sensor network) technology. However, this technology is not suitable to support various data transmission rate. A suitable CSMA/CA algorithm for Land Warrior System in order to solve these existing system problems is proposed. The proposed algorithm is designed to be variable CSMA/CA algorithm parameter, depending on data rate. For the evaluation of Land Warrior system model and CSMA/CA algorithm, we used Castalia. As a result of the simulation, it is found that the proposed system model can not only relieve loads of data processing, but also probability of collision was decreased.

A Study on the Wireless Sensor Network Routing Method and Fault Node Detection for Production Line (생산라인에 적용을 위한 무선 센서 네트워크 라우팅방식 및 고장노드 검출에 대한 연구)

  • Park, Jeong?Hyeon;Seo, Chang-Jun
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1104-1108
    • /
    • 2018
  • IIoT applies IoT to industrial sites to monitor factors such as production, manufacturing, and safety, and it is a solution that allows the worker to easily manage the site. An important technology element in this IIoT is a technology that collects information on industrial sites and delivers reliable information to managers using sensors. Therefore, general industrial sites use wired network methods such as Ethernet and RS485 to deliver information. However, there are limitations to the problem of infrastructure costs and to the wide range of line constructions in network deployment. Therefore, in this paper, the network of IEEE 802.15.4 Ad-Hoc wireless sensors is deployed on production lines with machine tools. In addition, we describe the routing method considering machine tool layout and sensor node failure detection algorithm.

Implementation of Personalized Mobile Agent System using Agilla in Ubiquitous Sensor Network (USN환경에서 Agilla를 이용한 개인화된 모바일 에이전트 시스템 구현)

  • Kim, Gang-Seok;Lee, Dong-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.203-210
    • /
    • 2011
  • The current sensor network analyzes the data collected by the sensing of fixed sensor nodes and provides a service. However, this method cannot actively handle the state and the change in the position of people, 'the target for sensing and the change in the environment', including home automation, building automation and real-time road & weather information, and healthcare environment, etc. To support a dynamic situation which is appropriate for an individual in this diverse environment, it is necessary to provide actively differentiated specific information according to the movement of people and the changes in the environment. In this study, a individualized sensor mobile agent middleware which provides the individualized information (the location of fire incidence and the trace for the path of spread), has been realized through the sensor network environment constructed by the installation of wireless sensor nodes mounted with mobile agent middlewares in buildings.

System Optimization, Full Data Rate and Transmission Power of Decode-and-Forward Cooperative Communication in WSN (WSN환경에서 Decode-and-Forward 협력통신의 시스템 최적화 및 최대전송률과 저전력에 관한 연구)

  • Kim, Gun-Seok;Kong, Hyung-Yun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.7
    • /
    • pp.597-602
    • /
    • 2007
  • In conventional cooperative communication data rate is 1/2 than non cooperative protocols. In this paper, we propose a full data rate DF (Decode and Forward) cooperative transmission scheme. Proposed scheme is based on time division multiplexing (TDM) channel access. When DF protocol has full data rate, it can not obtain diversity gain under the pairwise error probability (PEP) view point. If it increases time slot to obtain diversity gain, then data rate is reduced. The proposed algorithm uses orthogonal frequency and constellation rotation to obtain both full data rate and diversity order 2. Moreover, performance is analyzed according to distance and optimized components that affect the system performance by using computer simulation. The simulation results revealed that the cooperation can save the network power up to 7dB over direct transmission and 5dB over multi-hop transmission at BER of $10^{-2}$. Besides, it can improve date rate of system compared with the conventional DF protocol.

Time Synchronization for WSN Nodes Operating on Low-Energy Sleep-Wake Cycles (저 에너지의 취침 기상 사이클로 작동하는 무선센서 네크워크 노드들을 위한 시간 동기화)

  • Yun, Ho-Jung;Yun, Joo-Sung;Lee, Sung-Gu
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.331-335
    • /
    • 2010
  • Previous low-energy time synchronization methods have mainly focused on reducing the number of transmission or reception packets. However, this paper proposes a method that reduces the percentage of time a node has to be awake (the duty cycle), assuming that a periodic sleep-wake cycle is used to conserve energy. Based on our experience with actual WSN devices, a system model is proposed, and the potential performance of the proposed method, with different parameter values, is analyzed. To further demonstrate the feasibility of our method, experiments were conducted using nine WSN devices in a $3{\times}3$ grid network topology. The results show the average synchronization error is 107.57 $\mu{s}$ in duty cycle 5% and synchronization period 10 sec, and 130 $\mu{s}$ in duty cycle 2.5% and synchronization period 20 sec.

Cluster Property based Data Transfer for Efficient Energy Consumption in IoT (사물인터넷의 에너지 효율을 위한 클러스터 속성 기반 데이터 교환)

  • Lee, Chungsan;Jeon, Soobin;Jung, Inbum
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.966-975
    • /
    • 2017
  • In Internet of Things (IoT), the aim of the nodes (called 'Things') is to exchange information with each other, whereby they gather and share information with each other through self decision-making. Therefore, we cannot apply existing aggregation algorithms of Wireless sensor networks that aim to transmit information to only a sink node or a central server, directly to the IoT environment. In addition, since existing algorithms aggregate information from all sensor nodes, problems can arise including an increasing number of transmissions and increasing transmission delay and energy consumption. In this paper, we propose the clustering and property based data exchange method for energy efficient information sharing. First, the proposed method assigns the properties of each node, including the sensing data and unique resource. The property determines whether the node can respond to the query requested from the other node. Second, a cluster network is constructed considering the location and energy consumption. Finally, the nodes communicate with each other efficiently using the properties. For the performance evaluation, TOSSIM was used to measure the network lifetime and average energy consumption.

On the Need for Efficient Load Balancing in Large-scale RPL Networks with Multi-Sink Topologies

  • Abdullah, Maram;Alsukayti, Ibrahim;Alreshoodi, Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.212-218
    • /
    • 2021
  • Low-power and Lossy Networks (LLNs) have become the common network infrastructure for a wide scope of Internet of Things (IoT) applications. For efficient routing in LLNs, IETF provides a standard solution, namely the IPv6 Routing Protocol for LLNs (RPL). It enables effective interconnectivity with IP networks and flexibly can meet the different application requirements of IoT deployments. However, it still suffers from different open issues, particularly in large-scale setups. These include the node unreachability problem which leads to increasing routing losses at RPL sink nodes. It is a result of the event of memory overflow at LLNs devices due to their limited hardware capabilities. Although this can be alleviated by the establishment of multi-sink topologies, RPL still lacks the support for effective load balancing among multiple sinks. In this paper, we address the need for an efficient multi-sink load balancing solution to enhance the performance of PRL in large-scale scenarios and alleviate the node unreachability problem. We propose a new RPL objective function, Multi-Sink Load Balancing Objective Function (MSLBOF), and introduce the Memory Utilization metrics. MSLBOF enables each RPL node to perform optimal sink selection in a way that insure better memory utilization and effective load balancing. Evaluation results demonstrate the efficiency of MSLBOF in decreasing packet loss and enhancing network stability, compared to MRHOF in standard RPL.

On the QoS Support in Medium Access Control for Medical Sensor Networks (의료용 센서 네트워크에서 QoS 지원의 매체접속제어)

  • Ashrafuzzaman, Kazi;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.151-158
    • /
    • 2010
  • In line with the requirement of appropriate protocol support for such mission-critical wireless sensor network (WSN) applications as patient monitoring, we investigate the framework for designing medium access control (MAC) schemes. The data traffic in medical systems comes with inherent traffic heterogeneity as well as strict requirement of reliability according to the varied extents of devise-wise criticality in separate cases. This implies that the quality-of-Service (QoS) issues are very distinctly delicate requiring specialized consideration. Besides, there are features in such systems that can be exploited during the design of a MAC scheme. In a monitoring or routine surveillance application, there are degrees of regularity or predictability in traffic as coordinated from a node of central control. The coordinator thus takes on the role of marshaling the resources in a neighborhood of nodes deployed mostly for upstream traffic; in a collision-free scheme, it schedules the time slots for each superframe based on the QoS specifications. In this preliminary study, we identify the key artifacts of such a MAC scheme. We also present basic performance issues like the impact of superframe length on delay incurred, energy efficiency achieved in the network operation as obtained in a typical simulation setup based on this framework.