• Title/Summary/Keyword: WSN(Wireless Sensor Node)

Search Result 330, Processing Time 0.023 seconds

Design of Border Surveillance and Control System Based on Wireless Sensor Network (WSN 기반 국경 감시 및 제어 시스템 설계)

  • Hwang, Bo Ram;An, Sun Shin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.1
    • /
    • pp.11-14
    • /
    • 2015
  • WSN (Wireless Sensor Network) based on low-power is one of the core technologies in the ubiquitous society. In this paper, we present a border surveillance and control system in WSN environment. The system consists of static sensor node, mobile sensor node, static gateway, mobile gateway, server and mobile application. Mobile applications are divided into user mode and manager mode. So users monitor border surveillance through mobile phone and get information of border network environment without time and space constraints. In manager mode, for the flexible operation of nodes, manager can update to the software remotely and adjust the position of the mobile node. And also we implement a suitable multi-hop routing protocol for scalable low-power sensor nodes and confirm that the system operates well in WSN environment.

Efficient Mobile Node Authentication in WSN (센서 네트워크에서 이동성이 있는 센서 노드의 효율적인 인증 방안)

  • Shon, Tae-Shik;Han, Kyu-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.833-839
    • /
    • 2010
  • Mobility of sensor node is one of the rising issues in Wireless Sensor Networks (WSN). However, current security researches on WSN only consider static environments. Thus they are not sufficient to be deployed in the dynamic environment where the resource is limited. In this paper, we propose the efficient node authentication and key exchange protocol that reduces the overhead in node re-authentication.

Design of Implantable Wireless Sensor Node to Monitor the Livestock Body Temperature (가축의 실시간 체온 측정을 위한 이식형 무선 센서 노드 설계)

  • Kim, Hyun-Joong;Yang, Hyun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.585-588
    • /
    • 2009
  • Wireless Sensor Network (WSN) is consisted of lots of tiny sensor nodes with limited processing power and computing resources. Thus, the most critical and fundamental element of WSN technology is sensor node, which gathers environmental information and transmits it to the user application systems. Due to the technological advancement, sensor nodes are become smaller and more intelligent, hence, expand their application area. Specifically, implantable wireless sensor node technology, to monitor and treat disease by implanting tiny sensor nodes into human body or livestock, shows further directions of WSN. In this paper, we have designed an implantable wireless sensor node to monitor livestock body temperature in real time. We also discussed on the additional considerations to implement real time bio-monitoring systems.

  • PDF

Performance Analysis on Wireless Sensor Network using LDPC Codes over Node-to-node Interference

  • Choi, Sang-Min;Moon, Byung-Hyun
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.77-80
    • /
    • 2005
  • Wireless sensor networks(WSN) technology has various applications such as surveillance and information gathering in the uncontrollable area of human. One of major issues in WSN is the research for reducing the energy consumption and reliability of data. A system with forward error correction(FEC) can provide an objective reliability while using less transmission power than a system without FEC. In this paper, we propose to use LDPC codes of various code rate(0.53, 0.81, 0.91) for FEC for WSN. Also, we considered node-to-node interference in addition to AWGN channel. The proposed system has not only high reliable data transmission at low SNR, but also reduced transmission power usage.

  • PDF

Fault Recover Algorithm for Cluster Head Node and Error Correcting Code in Wireless Sensor Network (무선센서 네트워크의 클러스터 헤드노드 고장 복구 알고리즘 및 오류 정정코드)

  • Lee, Joong-Ho
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.449-453
    • /
    • 2016
  • Failures would occur because of the hostile nature environment in Wireless Sensor Networks (WSNs) which is deployed randomly. Therefore, considering faults in WSNs is essential when we design WSN. This paper classified fault model in the sensor node. Especially, this paper proposed new error correcting code scheme and fault recovery algorithm in the CH(Cluster Head) node. For the range of the small size information (<16), the parity size of the proposed code scheme has the same parity length compared with the Hamming code, and it has a benefit to generate code word very simple way. This is very essential to maintain reliability in WSN with increase power efficiency.

QoS Analysis of Wireless Sensor Network with ARQ Scheme (ARQ 방식을 적용한 무선 센서 네트워크의 QoS 해석)

  • Roh, Jae-Sung;Kim, Wan-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Severe energy constraints and the low power consumption require the significance of the energy efficient error control mechanisms in wireless sensor network (WSN). In this paper, an automatic repeat request (ARQ) methodology for the analysis of error control schemes in WSN is presented such that the effects of packet length, the modulation scheme and the interference effect of the wireless channel are investigated. Moreover, an analyis of ARQ error control is provided by considering two major architectures for wireless sensor network, i.e., Mica2 and MicaZ sensor nodes. And the throughput performance of WSN with asynchronous FSK signal and DSSS-OQPSK signal with selective repeat ARQ scheme are analyzed in multiple interference environment, and the probability of receiving a correct bit and packet from target node to sink node is evaluated as a function of the channel parameter, the number of wireless sensor node, and the spreading factor.

A Collaborative and Predictive Localization Algorithm for Wireless Sensor Networks

  • Liu, Yuan;Chen, Junjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3480-3500
    • /
    • 2017
  • Accurate locating for the mobile target remains a challenge in various applications of wireless sensor networks (WSNs). Unfortunately, most of the typical localization algorithms perform well only in the WSN with densely distributed sensor nodes. The non-localizable problem is prone to happening when a target moves into the WSN with sparsely distributed sensor nodes. To solve this problem, we propose a collaborative and predictive localization algorithm (CPLA). The Gaussian mixture model (GMM) is introduced to predict the posterior trajectory for a mobile target by training its prior trajectory. In addition, the collaborative and predictive schemes are designed to solve the non-localizable problems in the two-anchor nodes locating, one-anchor node locating and non-anchor node locating situations. Simulation results prove that the CPLA exhibits higher localization accuracy than other tested predictive localization algorithms either in the WSN with sparsely distributed sensor nodes or in the WSN with densely distributed sensor nodes.

Fire Detection Method Using IoT and Wireless Sensor Network

  • Park, Jung Kyu;Roh, Young Hwa;Nam, Ki hun;Seo, Hyung Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.131-136
    • /
    • 2019
  • A wireless sensor network (WSN) consists of several sensor nodes and usually one base station. In this paper, we propose a method to monitor topics using a wireless sensor network. Fire threatens people, animals, and plants, and it takes a lot of recovery time when a fire occurs. For this reason, it is necessary to use a fire monitoring system that is easy to configure and fast to avoid fire. In this paper, we propose a fast and easily reliable fire detection system using WSN. The wireless node of the WSN measures the temperature and brightness around the node. The measured information is transferred to the workstation and to the base station. The workstation analyzes current and historical data records to monitor the fire and notify the manager.

A Secure and Efficient Way of Node Membership Verification in Wireless Sensor Networks

  • Pathan, Al-Sakib Khan;Hong, Choong-Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.1100-1101
    • /
    • 2007
  • This paper proposes an efficient mechanism of node membership verification within the groups of sensors in a wireless sensor network (WSN). We utilize one-way accumulator to check the memberships of the legitimate nodes in a secure way. Our scheme also supports the addition and deletion of nodes in the groups in the network. Our analysis shows that, our scheme could be well-suited for the resource constrained sensors in a sensor network and it provides a lightweight mechanism for secure node membership verification in WSN.

  • PDF

Wake-up Algorithm of Wireless Sensor Node Using Geometric Probability (기하학적 확률을 이용한 무선 센서 노드의 웨이크 업 알고리즘 기법)

  • Choi, Sung-Yeol;Kim, Sang-Choon;Kim, Seong Kun;Lee, Je-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • Efficient energy management becomes a critical design issue for complex WSN (Wireless Sensor Network). Most of complex WSN employ the sleep mode to reduce the energy dissipation. However, it should cause the reduction of sensing coverage. This paper presents new wake-up algorithm for reducing energy consumption in complex WSN. The proposed wake-up algorithm is devised using geometric probability. It determined which node will be waked-up among the nodes having overlapped sensing coverage. The only one sensor node will be waked-up and it is ready to sense the event occurred uniformly. The simulation results show that the lifetime is increased by 15% and the sensing coverage is increased by 20% compared to the other scheduling methods. Consequently, the proposed wake-up algorithm can eliminate the power dissipation in the overlapped sensing coverage. Thus, it can be applicable for the various WSN suffering from the limited power supply.