• Title/Summary/Keyword: WSN(Wireless Sensor Network)

Search Result 645, Processing Time 0.029 seconds

Control Method for the number of check-point nodes in detection scheme for selective forwarding attacks (선택적 전달 공격 탐지 기법에서의 감시 노드 수 제어기법)

  • Lee, Sang-Jin;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.387-390
    • /
    • 2009
  • Wireless Sensor Network (WSN) can easily compromised from attackers because it has the limited resource and deployed in exposed environments. When the sensitive packets are occurred such as enemy's movement or fire alarm, attackers can selectively drop them using a compromised node. It brings the isolation between the basestation and the sensor fields. To detect selective forwarding attack, Xiao, Yu and Gao proposed checkpoint-based multi-hop acknowledgement scheme (CHEMAS). The check-point nodes are used to detect the area which generating selective forwarding attacks. However, CHEMAS has static probability of selecting check-point nodes. It cannot achieve the flexibility to coordinate between the detection ability and the energy consumption. In this paper, we propose the control method for the number fo check-point nodes. Through the control method, we can achieve the flexibility which can provide the sufficient detection ability while conserving the energy consumption.

  • PDF

A Study on Linkage Integration Control System Using Power Line Communication(PLC) and Wireless Sensor Network(WSN) (전력선 통신과 무선 센서 네트워크 기술을 이용한 연동 통합제어 시스템에 관한 연구)

  • Ji, Yun-il;Lim, Kang-il;Park, Kyung-sub
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.733-736
    • /
    • 2009
  • Power Line Communication(PLC) is need not additional communication line. So establishment expense is inexpensive and application is simple. Therefore, lower part network of various application field is possible. However, there are high subordinate interference and noise problem on limited transmission data and communication interference element. Wireless Sensor Network(WSN) is need not infrastructure, Self-regulating network architecture of sensor nodes is possible. So at short time, network construction is available. But, power consumption is increased by active sensing for QoS elevation and unnecessary information transmission, low electric power design and necessity of improve protocol are refered to life shortening problem and is studied. In this paper, supplement problem of power line communication and wireless sensor network mutually and because advantage becomes linkage integration control system using synergy effect of two technologies as more restriction be and tries to approach structurally control network that is improved for smooth network environment construction. Honeywell's hybrid sensor network does comparative analysis(benchmarking). Confirm performance elevation proposing teaming of power line communication and wireless sensor network. Through simulation, service delay decreases and confirms that performance elevation.

  • PDF

WIVA : WSN Monitoring Framework based on 3D Visualization and Augmented Reality in Mobile Devices (모바일 기기의 3차원 시각화와 증강현실에 기반한 센서네트워크 모니터링 프레임워크)

  • Koo, Bon-Hyun;Choi, Hyo-Hyun;Shon, Tae-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.106-113
    • /
    • 2009
  • Recently, due to many industrial accidents at construction sites, a variety of researches for structural health monitoring (SHM) of buildings are progressing. For real site application of SHM, one of the advanced technologies has blown as wireless sensor networks (WSN). In this paper, we proposed WIVA(WSN Monitoring framework based on 3D Visualization and Augmented Reality in Mobile Devices) system that applies 3D visualization and AR technology to mobile devices with camera based on WSN in order to expand the extent of information can observe. Moreover, we performed experiments to validate effectiveness in 3D and AR mode that utilize WSN data based on IEEE 802.15.4. In real implementation scenario, we demonstrated a fire occurrence test in 3-story building miniature.

On the Performance Evaluation of Energy-Aware Sleep Scheduling (EASS) in Energy Harvesting WSN (EH-WSN)

  • Encarnacion, Nico N.;Yang, Hyun-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.264-268
    • /
    • 2012
  • Tree-based structures offer assured optimal paths from the data source to the sink. Shortest routes are disregarded since these do not consider the remaining energy level of the nodes. This shortens the lifetime of the whole network. Most tree-based routing protocols, although aware of the nodes' energy, do not consider an energy aware sleep scheduling scheme. We propose an energy-aware sleep scheduling (EASS) scheme that will improve the sleep scheduling scheme of an existing tree-based routing protocol. An energy harvesting structure will be implemented on the wireless sensor network. The depth of sleep of every node will be based on the harvested energy.

ECG Monitoring using High-Reliability Functional Wireless Sensor Node based on Ad-hoc network (고신뢰도 기능성 무선센서노드를 이용한 Ad-hoc기반의 ECG 모니터링)

  • Lee, Dae-Seok;Do, Kyeong-Hoon;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1215-1221
    • /
    • 2009
  • A novel approach for electrocardiogram (ECG) analysis within a functional sensor node has been developed and evaluated. The main aim is to reduce data collision, traffic overload and power consumption in healthcare applications of wireless sensor networks(WSN). The sensor node attached on the patient's body surface around the heart can perform ECG analysis based on a QRS detection algorithm to detect abnormal condition of the patient. Data transfer is activated only after detected abnormality in the ECG. This system can reduce packet loss during transmission by reducing traffic overload. In addition, it saves power supply energy leading to more reliable, cheap and user-friendly operation in the WSN for ubiquitous health monitoring.

Wireless Sensor Node Location Management By Regression Analysis of RSSI (RSSI 측정값의 회귀분석을 이용한 무선센서노드의 위치관리)

  • Choi, Jun-Young;Kim, Hyun-Joong;Yang, Hyun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.308-311
    • /
    • 2008
  • One of the key technical elements of wireless sensor network (WSN) is location management of sensor nodes. Typical node location management methods use GPS, ultrasonic sensors or RSSI. In this paper we propose a new location management method which adopts regression analysis of RSSI measurement to improve the accuracy of sensor node position estimation. We also evaluated the performance of proposed method by comparing the experimental results with existing scheme. According to the results, our proposed method showed better accuracy than existing location management scheme using RSSI and Firis' equation.

  • PDF

Policy for planned placement of sensor nodes in large scale wireless sensor network

  • Sharma, Vikrant;Patel, R.B;Bhadauria, HS;Prasad, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3213-3230
    • /
    • 2016
  • Sensor node (SN) is a crucial part in any remote monitoring system. It is a device designed to monitor the particular changes taking place in its environs. Wireless sensor network (WSN) is a system formed by the set of wirelessly connected SNs placed at different geographical locations within a target region. Precise placement of SNs is appreciated, as it affects the efficiency and effectiveness of any WSN. The manual placement of SNs is only feasible for small scale regions. The task of SN placement becomes tedious, when the size of a target region is extremely large and manually unreachable. In this research article, an automated mechanism for fast and precise deployment of SNs in a large scale target region has been proposed. It uses an assembly of rotating cannons to launch the SNs from a moving carrier helicopter. The entire system is synchronized such that the launched SNs accurately land on the pre-computed desired locations (DLs). Simulation results show that the proposed model offers a simple, time efficient and effective technique to place SNs in a large scale target region.

Control Message Transmission Radius for Energy-efficient Clustering in Large Scale Wireless Sensor Networks (스케일이 큰 무선 센서 네트워크에서 에너지 효율적인 클러스터링을 위한 제어 메시지 전송반경)

  • Cui, Huiqing;Kang, Sang Hyuk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Wireless sensor networks consist of a large number of tiny sensor nodes which have limited battery life. In order to maximize the network life span, we propose an optimal transmission radius, R, for control messages. We analyze the transmission radius as a function of the energy consumption of cluster head nodes and the energy consumption of member nodes to find the optimal value of R. In simulations we apply our proposed optimization of transmission range to LEACH-based single-hop and multi-hop networks to show that our proposed scheme outperforms other existing routing algorithms in terms of network life span.

Temperature Data Visualization for Condition Monitoring based on Wireless Sensor Network (무선 센서 네트워크 기반의 상태 모니터링을 위한 온도 데이터 시각화)

  • Seo, Jung-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.245-252
    • /
    • 2020
  • Unexpected equipment defects can cause a huge economic losses in the society at large. Although condition monitoring can provide solutions, the signal processing algorithms must be developed to predict mechanical failures using data acquired from various sensors attached to the equipment. The signal processing algorithms used in a condition monitoring requires high computing efficiency and resolution. To improve condition monitoring on a wireless sensor network(WSN), data visualization can maximize the expressions of the data characteristics. Thus, this paper proposes the extraction of visual feature from temperature data over time using condition monitoring based on a WSN to identify environmental conditions of equipment in a large-scale infrastructure. Our results show that time-frequency analysis can visually track temperature changes over time and extract the characteristics of temperature data changes.

Cluster-based Energy-aware Data Sharing Scheme to Support a Mobile Sink in Solar-Powered Wireless Sensor Networks (태양 에너지 수집형 센서 네트워크에서 모바일 싱크를 지원하기 위한 클러스터 기반 에너지 인지 데이터 공유 기법)

  • Lee, Hong Seob;Yi, Jun Min;Kim, Jaeung;Noh, Dong Kun
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1430-1440
    • /
    • 2015
  • In contrast with battery-based wireless sensor networks (WSNs), solar-powered WSNs can operate for a longtime assuming that there is no hardware fault. Meanwhile, a mobile sink can save the energy consumption of WSN, but its ineffective movement may incur so much energy waste of not only itself but also an entire network. To solve this problem, many approaches, in which a mobile sink visits only on clustering-head nodes, have been proposed. But, the clustering scheme also has its own problems such as energy imbalance and data instability. In this study, therefore, a cluster-based energy-aware data-sharing scheme (CE-DSS) is proposed to effectively support a mobile sink in a solar-powered WSN. By utilizing the redundant energy efficiently, CE-DSS shares the gathered data among cluster-heads, while minimizing the unexpected black-out time. The simulation results show that CE-DSS increases the data reliability as well as conserves the energy of the mobile sink.