• 제목/요약/키워드: WRV

검색결과 39건 처리시간 0.019초

종이의 물리적 특성에 미치는 섬유의 찌그러짐 특성의 영향에 대한 CLSM 분석 (Analysis of Effects of Fiber's Collapse Index on Physical Properties of Paper Using CLSM)

  • 김서환;박종문;김철환
    • 펄프종이기술
    • /
    • 제31권1호
    • /
    • pp.46-51
    • /
    • 1999
  • The most important effect of refining is believed as the internal fibrillation. The internal fibrillation is the separation of the fiber wall into several lamellae. The internal fibrillation results in fiber swelling as water penetrates the fiber wall. The increase in paper strength as a result of refining was due to delamination which made the fiber more flexible. Pulp fibers are refined to 20, 40, and 70$^{\circ}$SR freeness at Valley beater. Changes of Physical paper properties are analyzed depending on fiber wall thickness and fiber's collapse index at 2.5 and 5.6kg$_f$ refining load. At same $^[\circ}$SR freeness with 2.5kg$_f$ refining load, fiber wall thickness is increased further than at high 5.6kg$_f$ refining load. With higher fiber wall thickness by lower intensity refining load, higher internal fibrillation, flexibility, collapsability of fibers are achieved. Those effects improve WRV, tensile strength, and burst strength. Tear strength shows opposite trend to tensile and burst strength as usual.

  • PDF

The Effect of Cellulase on the Pore Structure of Cellulose Fibers

  • Park, Sun-Kyu;Venditti Richard A.;Abrecht David G.;Jameel Hasan;Pawlak Joel J.;Lee, Jung-Myoung
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.1
    • /
    • pp.43-49
    • /
    • 2006
  • The surface and pore structure of cellulose fibers have a significant impact on the properties and performance in applications. Cellulase enzymatic hydrolysis of cellulose fibers can result in changes to the surface and pore structure thus providing a useful tool for fiber modification. This research characterizes these changes using various test methods such as fiber dimension, water retention value, hard-to-remove water content, freezing and non-freezing bound water content, polymer adsorption, and crystallinity index. For a high-dosage enzyme treatment (0.10 g/g), the fiber length was significantly decreased and the fibers were 'cut' in the cross direction, not in the axial direction. The swelling capacities as measured by the WRV and HR water content increased for the high-dosage treatment. Three independent measurements (non-freezing bound water, polymer adsorption, and crystallinity index) are in good agreement with the statement that the amorphous regions of cellulose fibers are a more readily available substrate relative to crystalline regions. Based on the experimental results obtained herein, a model was proposed to explain surface and pore structure modification of cellulose fibers via enzymatic treatment.

  • PDF

Mechanical Impact Treatment on Pulp fibers and Their Handsheet Properties

  • Yung B. Seo;Kim, Dukki;Lee, Jong-Hoon;Yang Jeon
    • 펄프종이기술
    • /
    • 제34권5호
    • /
    • pp.56-62
    • /
    • 2002
  • Alternative way of shaping fibers suitable for papermaking was introduced. Impact refining, which was done simply by hitting wet fibers with a metal weight vertically, was intended to keep the fibers from shortening and to cause mostly internal fibrillation. Virgin chemical pulp, its recycled one and OCC were used in the experiment. It was noticed from the experiment that impact refining on virgin chemical pulp kept the fiber length and increased bonding properties greatly. However, in the recycled fibers from the chemical pulp, fiber length and bonding properties were decreased. In OCC, which seems to contain fractions of semi-chemical pulp and mechanical pulp (GP), and which is recycled pulp from corrugated boxes, fiber length and bonding properties were decreased disastrously. We believe recycled cellulosic fibers (recycled chemical pulp and OCC in this case), which went through hornification, were less resistant to the mechanical impact than virgin chemical pulp. For virgin chemical pulp, impact refining allowed no significant fiber length shortening, high WRV, and high mechanical strength.

섬유의 각질화에 따른 수초지의 평형함수율과 치수안정성의 관계 (Relationship between Equilibrium Moisture Contents and Dimensional Stability of Handsheet Depending on Fibers Hornification)

  • 박창순;이진호;길정하;박종문
    • 펄프종이기술
    • /
    • 제43권3호
    • /
    • pp.11-20
    • /
    • 2011
  • The conditions to which pulp fibers are exposed during paper production, converting, storage, use, and recycling can induce various changes in fiber morphology, surface characteristics, and suitability for paper production by recycled fibers. Most of those changes can be described by hornification. Paper has highly hygroscopic properties which affect dimensional change by relative humidity variation of surrounding condition. The purpose of this study was to investigate the dimensional stability, moisture contents and dip elongation of handsheets at different relative humidity conditions of recycled kraft pulp and BCTMP. By using recycled fibers, dimensional stability was increased because hygroscopic properties of fibers decreased with repeated recycling treatment. Dip elongation of recycled pulp was higher than that of virgin pulp because of its weak fiber-to-fiber bonding. By recycling pulp, the relative bonded area was decreased because fiber could not swell more than virgin pulp. Dimensional stability largely depended on the equilibrium moisture contents of paper, the fiber-to-fiber bonding strength, and the relative bonded area.

폐 면직물 재활용 섬유를 이용한 라이너지의 강도개선 효과 (Effects on Mechanical Strength Improvement of Liner Paper using Recycled Fibres from Waste Cotton Clothes)

  • 홍석준;박정윤;김형진
    • 펄프종이기술
    • /
    • 제46권6호
    • /
    • pp.94-102
    • /
    • 2014
  • The physical and chemical properties of recycled fibers from mixed waste paper are more and more deteriorated because of unknown history of recycling times. In order to improve the mechanical properties of liner paper, the recycled fibers from wasted cotton clothes were used in papermaking process, and their applicabilities were evaluated in several points of fiber modification. Thus, two kinds of fiberizing methods from waste cotton clothes were considered by using rotary sandpaper and grinder mill. Finally, the rotary sandpaper method was relatively desirable in preserving longer fiber length and fibrillated fiber surface. The recycled cotton fibers by swelling treatment with NaOH and bleaching with reductive chemicals were mixed with OCC fibers, and the handsheets were prepared to basis weight of $80g/m^2$ and evaluated the mechanical properties of paper. The fibrous properties showed outstanding results in freeness and WRV improvements by alkali treatment and high brightness by reductive bleaching treatment. The physical and mechanical properties of sheet by mixing OCC fibers and recycled cotton fibers were also highly improved in tensile, burst strength and specially folding resistance.

침엽수, 활엽수 펄프섬유의 혼합비에 따른 종이의 강도발현 기작 구명 (Paper Strength Mechanism Depending on Mixing Ratio of Softwood and Hardwood Fibers)

  • 이진호;박종문
    • 펄프종이기술
    • /
    • 제33권3호
    • /
    • pp.1-8
    • /
    • 2001
  • Paper consists of fiber network and paper properties were highly affected by fiber characteristics. Many researchers have tried to relate fiber and paper properties. Softwood and hardwood fiber's are quite different in their properties. Generally, softwood fiber's are longer and more flexible than hardwood fibers. At present, many paper mills make mixed paper with softwood and hardwood fibers except for special grade. During fracture some fiber's are broken and others are pulled out. In this paper, the number of broken and pulled out fiber's during fracture is analyzed depending on the mixing ratio of softwood and hardwood fiber's. Fiber length, curl, kink, coarseness, WRV and formation index were measured. Double-edged strength samples were prepared to observe the number of broken and pulled out fiber's. Mixed paper strength was decreased with increasing hardwood fibers ratio. During fracture, softwood fiber's were more likely broken and hardwood fibers were more likely pulled out. The strength of paper which consists of softwood fibers was determined by fiber's broken strength and that of hardwood fibers by fiber's debonding strength. Paper strength was changed depending on the fiber's bonding capability. If the fiber is longer and more flexible, the fiber network becomes stronger and stiffer.

  • PDF

고점도 펄프를 위한 새로운 한지 펄프화법의 개발(제1보) - 닥나무 백피의 상압 펄프화 특성 - (Development of High Viscosity Pulping Method for Korean Paper (I) - Atmospheric Pressure Pulping Characteristics of Paper Mulberry White Bast -)

  • 이상현;최태호
    • 펄프종이기술
    • /
    • 제43권2호
    • /
    • pp.57-65
    • /
    • 2011
  • Pulping of paper mulberry (Broussonetia kazinoki) white bast has been examined by novel atmospheric pressure pulping methods. The viscosity of pulp has been found to be highly sensitive and variable with pulping methods. Therefore, selections of pulping chemicals and conditions are very important. Two kinds of pulping procedures were employed for the high viscosity pulp manufacturing. The one is ammonium oxalate treatment and the other is sodium chlorite and acetic acid treatment. Not only chemical components and pulp yields which of paper mulberry white bast but also water retention value (WRV), whiteness index, yellowness index, and colors of every pulp were examined. The hot water, 1% NaOH, and ethanol-benzene extractives which of paper mulberry white bast were 4.48%, 28.45%, and 2.84%, respectively. The contents of holocellulose, lignin, and ash were 90.66%, 1.05%, and 2.18%, respectively. In the pulp yields, group 1 which treated with only ammonium oxalate were 77.04-81.71%, group 2 which treated with ammonium oxalate and acidified sodium chlorite separately and washed between first and second stages were 64.15-83.90%, group 3 which treated with ammonium oxalate and acidified sodium chlorite separately and not washed between first and second stages were 57.35-73.17%, and group 4 which treated with mixed ammonium oxalate and acidified sodium chlorite were 66.58-68.43%. The pulps treated with acidified sodium chlorite showed high whiteness index, but the pulps treated with only ammonium oxalate showed high yellowness index. Variations in the combinations of treatments resulted in different pulp characteristics.

백색부후균 생물 전처리에 의한 Kraft Pulp화 특성 (Kraft Pulping Characteristics by Bio-pretreatment with White-rot Fungus)

  • 강규영;조병묵;오정수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권4호
    • /
    • pp.103-110
    • /
    • 2001
  • 목재 내 리그닌의 선택적 분해 특성을 지닌 백색부후균 중, Phanerochaete chrysosporium KCCM 34740 균주를 현사시나무 목재 칩에 전처리하여 bio-kraft pulping 적용 가능성을 실험적으로 평가하였다. 전처리 결과, 무처리 대조구에 비해 펄프의 정선수율은 전처리 10일에서 최고 약 2%의 증가를 보였으며, 전처리 기간의 증가에 따라 여수도의 감소, WRV의 증가 경향을 나타냈다. 또한 수초지의 물성 개선에도 효과가 있었으며, 주사전자현미경 관찰을 통하여 이러한 효과가 백색부후균의 생물고해 작용, 즉 펄프 섬유의 미세섬유화 및 다공질화에 기인한 것임을 확인할 수 있었다. 이러한 결과로써 향후 kraft 증해 약액 및 제지공정상의 고해 동력에너지의 소비를 절감할 수 있을 것으로 기대한다.

  • PDF

능이버섯 및 Protease효소의 첨가가 연육에 미치는 영향 (Effect of Neungi (Sarcodon aspratus) Mushroom and Its Protease Addition on the Meat Tenderizing)

  • 조희연;정선화;조남석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권5호
    • /
    • pp.39-44
    • /
    • 2004
  • 본 연구는 능이버섯 분말 및 능이버섯 protease의 첨가가 고기연육 및 식품첨가시 색깔변화에 미치는 영향을 구명하고자 실시하였다. 능이버섯 분말과 protease를 첨가로 처리고기의 높은 보수력을 결과하였는 바, 능이버섯의 protease는 무처리에 비해 26.8%, 설탕에 비해 13.8% 의 보수력을 증가시켰다. 이러한 보수력 증가는 고기 단백질의 가수분해로 인한 수용성 성분의 증가로 인한 고기조직의 연육효과를 결과하는 것으로 판단된다. 능이버섯 분말과 protease 의 처리로 소고기의 경도가 현저한 감소를 보였으며, 시판 연육제인 papain과 거의 동일한 연육효과를 가져왔다. 능이버섯 첨가로 인한 경도감소효과는 능이버섯분말이 51.6%, 능이버섯 protease는 58.5%, papain은 56.3%의 높은 경도감소를 나타냈다. 그 이유로서는 능이버섯의 protease가 actin, myosin, connectin을 비롯한 근원섬유 단백질을 효과적으로 분해를 시키기 때문으로 사료된다. 능이버섯의 첨가가 식품의 색깔변화에 미치는 영향을 조사한 결과, 능이버섯 분말첨가는 명도를 감소시켰으나, protease 첨가로 명도가 47.2로 높아졌으며, 설탕 및 papain도 protease와 유사한 명도를 나타냈다. 적색도와 황색도의 경우에는 대조구에 비하여 모든 처리에서 낮은 값을 보여주었다. ΔE값에 있어서 능이버섯 분말을 첨가하면 4.55로서 현저한 색차를 보여주었으며, protease, 설탕 및 papain은 2.07~2.74로서 감지할 수 있을 정도의 색차로 나타났다 능이버섯 분말이 진한 색차를 초래한 것은 능이버섯이 가지는 색소에 기인하는 것으로서 생각된다.