• 제목/요약/키워드: WRKY

검색결과 42건 처리시간 0.025초

Construction of an Integrated Pepper Map Using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC End Sequences

  • Lee, Heung-Ryul;Bae, Ik-Hyun;Park, Soung-Woo;Kim, Hyoun-Joung;Min, Woong-Ki;Han, Jung-Heon;Kim, Ki-Taek;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • 제27권1호
    • /
    • pp.21-37
    • /
    • 2009
  • Map-based cloning to find genes of interest, marker-assisted selection (MAS), and marker-assisted breeding (MAB) all require good genetic maps with high reproducible markers. For map construction as well as chromosome assignment, development of single copy PCR-based markers and map integration process are necessary. In this study, the 132 markers (57 STS from BAC-end sequences, 13 STS from RFLP, and 62 SSR) were newly developed as single copy type PCR-based markers. They were used together with 1830 markers previously developed in our lab to construct an integrated map with the Joinmap 3.0 program. This integrated map contained 169 SSR, 354 RFLP, 23 STS from BAC-end sequences, 6 STS from RFLP, 152 AFLP, 51 WRKY, and 99 rRAMP markers on 12 chromosomes. The integrated map contained four genetic maps of two interspecific (Capsicum annuum 'TF68' and C. chinense 'Habanero') and two intraspecific (C. annuum 'CM334' and C. annuum 'Chilsungcho') populations of peppers. This constructed integrated map consisted of 805 markers (map distance of 1858 cM) in interspecific populations and 745 markers (map distance of 1892 cM) in intraspecific populations. The used pepper STS were first developed from end sequences of BAC clones from Capsicum annuum 'CM334'. This integrated map will provide useful information for construction of future pepper genetic maps and for assignment of linkage groups to pepper chromosomes.

Transgenic Peppers by Disease Defense Related CaWRKY114

  • Jung, Min;Lee, Yun-Hee;Kim, Ju-Yeon;Kim, Hyo-Soon;Park, Yoon-Sik;Choi, Soon-Ho;Shim, Dong-Bo;Her, Nam-Han;Lee, Jang-Ha;Yang, Seung-Gyun;Harn, Chee-Hark
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 춘계학술대회 및 국제심포지움 초록집
    • /
    • pp.130-130
    • /
    • 2005
  • PDF

Characterization of Burkholderia glumae Putative Virulence Factor 11 (PVF11) via Yeast Two-Hybrid Interaction and Phenotypic Analysis

  • Kim, Juyun;Kim, Namgyu;Mannaa, Mohamed;Lee, Hyun-Hee;Jeon, Jong-Seong;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제35권3호
    • /
    • pp.280-286
    • /
    • 2019
  • In this study, PVF11 was selected among 20 candidate pathogenesis-related genes in Burkholderia glumae based on its effect on virulence to rice. PVF11 was found to interact with several plant defense-related WRKY proteins as evidenced through yeast-two hybrid analysis (Y2H). Moreover, PVF11 showed interactions with abiotic and biotic stress response-related rice proteins, as shown by genome-wide Y2H screening employing PVF11 and a cDNA library from B. glumae-infected rice. To confirm the effect of PVF11 on B. glumae virulence, in planta assays were conducted at different stages of rice growth. As a result, a PVF11-defective mutant showed reduced virulence in rice seedlings and stems but not in rice panicles, indicating that PVF11 involvement in B. glumae virulence in rice is stage-dependent.

옥수수 유전자 기능 분석을 위한 전사인자의 이해 (Transcription Factor for Gene Function Analysis in Maize)

  • 문준철;김재윤;백성범;권영업;송기태;이병무
    • 한국작물학회지
    • /
    • 제59권3호
    • /
    • pp.263-281
    • /
    • 2014
  • 전사인자는 식물에서 유전자 발현을 조절하기 위해 필수적이며, 유전자의 promoter나 enhancer 부위에 결합하며, 기본 전사 조절, 전사의 향상, 발달, 세포내 신호전달, 환경에 반응, 세포 주기의 조절 등의 역할을 수행한다. 옥수수 게놈의 염기서열 분석은 전사인자의 유전자 발현 조절의 기작을 이해하는데 도움을 줄 것으로 기대된다. 과거 옥수수의 전체 게놈의 중복으로 옥수수에서 4,000개 이상의 전사인자가 코딩 될 것으로 예상된다. 본 논문에서는 옥수수의 ABI3/VP1, AP2/EREBP, ARF, ARID, AS2, AUX/IAA, BES1, bHLH, bZIP, C2C2-CO-like, C2C2-Dof, C2C2-GATA, C2C2-YABBY, C2H2, E2F/DP, FHA, GARP-ARR-B, GeBP, GRAS, HMG, HSF, MADS, MYB, MYB-related, NAC, PHD, WRKY 전사인자의 특징을 간략히 서술하고, 전사인자의 염기서열을 분석하여 sequence logo를 통하여 각각의 도메인을 표시하였다. 이러한 전사인자 및 관련된 유전자의 분자생물학적 연구는 옥수수에서 중요한 기능을 하는 유전자의 발굴 및 육종을 위한 목표 유전자의 선발에 도움을 줄 것으로 기대된다.

배추의 저온 스트레스 처리 시간대별 발현 유전자 네트워크 분석 (Time-based Expression Networks of Genes Related to Cold Stress in Brassica rapa ssp. pekinensis)

  • 이기호;유재경;박영두
    • 원예과학기술지
    • /
    • 제33권1호
    • /
    • pp.114-123
    • /
    • 2015
  • 식물은 다양한 생화학적 및 생리적 과정에 속한 유전자들의 발현 수준을 조절함으로써 저온 스트레스에 반응 및 적응을 할 수 있다. 이러한 스트레스 환경은 막 기능 손실, 세포벽의 변화, 대사 속도 변화 등과 같이 부정적인 영향을 초래한다. 따라서 본 연구는 배추(Brassica rapa ssp. pekinensis)에서의 시간 변화에 따른 저온 스트레스 반응 기작 관련 유전자 상호발현 네트워크를 구축하였다. 배추의 저온 스트레스 네트워크는 2,030개 node, 20,235개 edge, 및 34개 connected component로 구성되었으며, 구축된 네트워크는 배추에서 저온에 관여하는 유전자가 생육도 조절한다는 것을 보여 주었다. 구축한 네트워크를 이용하여 배추에서 저온 스트레스($4^{\circ}C$) 처리가 미치는 영향을 분석한 결과 WRKY 전사인자와 살리실산 신호에 의해 chitinase 부동 단백질이 활성화되고, 전신적 획득저항성을 작동하기 위해 기공 개폐 및 탄수화물 대사과정이 조절됨을 확인하였다. 또한 저온 처리 후 48시간 후에 저온 스트레스가 영양생장에서 생식 생장 및 분열 조직 단계의 변화를 초래하는 것으로 나타났다. 본 연구에서 구축한 네트워크 모델은 배추에서 저온 저항성 관련 유전자들의 발현 패턴을 정확히 유추하는 데 이용될 수 있을 것이다.

배 검은별무늬병 감염과 저항성 방어반응 연관 전사체 프로파일 (Transcriptomic Profile in Pear Leave with Resistance Against Venturia nashicola Infection)

  • 신일섭;천재안;김세희;조강희;원경호;정해원;김금선
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.36-36
    • /
    • 2022
  • The molecular understanding of resistance and susceptibility of host plants to scab, a most threatful disease to pome fruit production worldwide, is very limited. Comparing resistant line '93-3-98' to susceptible one 'Sweet Skin' at seven time points of 0, 0.5, 1, 2, 3, 4, 8 days post inoculation, RNA-sequencing data derived from infected and mock-inoculated young leaves were analyzed to evaluate the tolerant response and to mine candidate genes of pear to the scab pathogen Venturia nashicola. Analysis of the mapped reads showed that the infection of V. nashicola led to significant differential expression of 17,827 transcripts with more than 3-fold change in the seven pairs of libraries, of which 9,672 (54%) are up- and 8,155(46%) are down-regulated. These included mainly receptor (NB-ARC domains-containing, CC-NBS-LRR, TIR-NBS-LRR, seven transmembrane MLO family protein) and transcription factor (ethylene responsive element binding, WRKY DNA-binding protein) related gene. An arsenal of defense response of highly resistant pear accessions derived from European pear was probably supposed no sooner had V. nashicola infected its host than host genes related to disease suppression like Polyketide cyclase/dehydrase and lipid transport protein, WRKY family transcription factor, lectin protein kinase, cystein-rich RLK, calcium-dependent phospholipid-binding copine protein were greatly boosted and eradicated cascade reaction induced by pathogen within 24 hours. To identify transcripts specifically expressed in response to V. nashicola, RT-PCRs were conducted and compare to the expression patterns of seven cultivars with a range of highly resistant to highly susceptible symptom. A DEG belonging to the PR protein family genes that were higher expressed in response to V. nashicola suggesting extraordinary role in the resistance response were led to the identification. This study provides the first transcriptional profile by RNA-seq of the host plant during scab disease and insights into the response of tolerant pear plants to V. nashicola.

  • PDF

Molecular characterization of a novel rice(Oryza sativa L.) MAP kinase, OsEDRl, its role in defense signaling pathway.

  • Kim, Jung-A;Jwa, Nam-Soo
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.82-83
    • /
    • 2003
  • Plants have evolved differently from animals having mobile activities. Thus, plants should have developed unique defense mechanisms against biotic/abiotic stresses to which plants are differently exposed, according to seasons. Most organisms have an conserved signaling network using mitogen-activated protein kinase (MAPK) cascade(s). The phenomenon implied that they are functionally very important in all organisms. In fact, they constitute one of the major components of signaling pathways involved in regulating a wide range of cellular activities from growth and development to cell death. Recently, complete MAPK cascade was first characterized in Arabidopsis from the receptor kinase (FLS2) through fellowing MEKKI -MKK4/MKK5-MPK3/MPK6-WRKY22/MRKY29 pathway. Whereas, MAPK cascade signaling pathway in monocot plant including rice (0ryza sativa L.), the most important of all food crops and an established monocot plant research model, MAPKinase kinase kinases (MAPKKK) of rice are the first upstream component of the MAPK cascade, but MAPKKK has been first identified and characterized in our lab and designated as, OsEDRl based on its homology with the Arabidopsis EDRI. The Arabidopsis EDRl was regarded as a negative regulator of defense response and the role of rice OsEDRl was analyzed. Transcriptional regulation of OsEDRl was detected under various stresses and immunoblotting analysis is going on to detect the level of OsEDRl protein in the mutants showing unique phenotype. We also introduced the constitutively active and the dominant negative forms of the OsEDRl for characterizing biological function.

  • PDF

Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants

  • Baek, Dongwon;Chun, Hyun Jin;Yun, Dae-Jin;Kim, Min Chul
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.697-705
    • /
    • 2017
  • The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are modulated by sugar and phytohormone signaling. Environmental stresses significantly affect the uptake and utilization of nutrients by plants, but their effects on the Pi starvation response remain unclear. Recently, we reported that Pi starvation signaling is affected by abiotic stresses such as salt, abscisic acid, and drought. In this review, we identified transcription factors, such as MYB, WRKY, and zinc finger transcription factors with functions in Pi starvation and other environmental stress signaling. In silico analysis of the promoter regions of Pi starvation-responsive genes, including phosphate transporters, microRNAs, and phosphate starvation-induced genes, suggest that their expression may be regulated by other environmental stresses, such as hormones, drought, cold, heat, and pathogens as well as by Pi starvation. Thus, we suggest the possibility of cross-talk between Pi starvation signaling and other environmental stress signaling pathways.

MtMKK5 inhibits nitrogen-fixing nodule development by enhancing defense signaling

  • Hojin Ryu
    • Journal of Plant Biotechnology
    • /
    • 제49권4호
    • /
    • pp.300-306
    • /
    • 2022
  • The mitogen-activated protein kinase (MAPK) signaling cascade is essential for a wide range of cellular responses in plants, including defense responses, responses to abiotic stress, hormone signaling, and developmental processes. Recent investigations have shown that the stress, ethylene, and MAPK signaling pathways negatively affect the formation of nitrogen-fixing nodules by directly modulating the symbiotic signaling components. However, the molecular mechanisms underlying the defense responses mediated by MAPK signaling in the organogenesis of nitrogen-fixing nodules remain unclear. In the present study, I demonstrate that the Medicago truncatula mitogen-activated protein kinase kinase 5 (MtMKK5)-Medicago truncatula mitogen-activated protein kinase 3/6 (MtMPK3/6) signaling module, expressed specifically in the symbiotic nodules, promotes defense signaling, but not ethylene signaling pathways, thereby inhibiting nodule development in M. truncatula. U0126 treatment resulted in increased cell division in the nodule meristem zone due to the inhibition of MAPK signaling. The phosphorylated TEY motif in the activation domain of MtMPK3/6 was the target domain associated with specific interactions with MtMKK5. I have confirmed the physical interactions between M. truncatula nodule inception (MtNIN) and MtMPK3/6. In the presence of high expression levels of the defense-related genes FRK1 and WRKY29, MtMKK5a overexpression significantly enhanced the defense responses of Arabidopsis against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Overall, my data show that the negative regulation of symbiotic nitrogen-fixing nodule organogenesis by defense signaling pathways is mediated by the MtMKK5-MtMPK3/6 module.