• Title/Summary/Keyword: WRF-Fire

Search Result 6, Processing Time 0.019 seconds

Study on Sensitivities and Fire Area Errors in WRF-Fire Simulation to Different Resolution Data Set of Fuel and Terrain, and Surface Wind (WRF-Fire 산불 연료 · 지형자료 해상도와 지상바람의 연소면적 모의민감도 및 오차 분석연구)

  • Seong, Ji-Hye;Han, Sang-Ok;Jeong, Jong-Hyeok;Kim, Ki-Hoon
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.485-500
    • /
    • 2013
  • This study conducted WRF-Fire simulations in order to investigate sensitivities of the resolution of fire fuel and terrain data sets, and the surface wind to simulated fire area. The sensitivity simulations were consisted of 8 different WRF-Fire runs, each of which used different combination of data sets of fire fuel and terrain with different resolution. From the results it was turned out that the surface wind was most sensitive. The next was fire fuel and then fire terrain. Unfortunately, every run produced too much fire area. In other words no simulations succeeded in simulating such proper fire area so as for the WRF-Fire to be used realistically. It was verified that the errors of fire area from each runs were contributed by 41%, 53%, and 6% from surface wind, fire fuel, and fire terrain, respectively. Finally this study suggested that the selection of Anderson fuel category in the area of interest seemed to be very critical in the performance of WRF-Fire simulations.

Simulations of Changes in Wind Field Over Mountainous Terrains Using WRF and ENVI-met Numerical Models (WRF와 ENVI-met 수치 모델을 이용한 산악지형의 바람장 변화 모사)

  • Won, Myoungsoo;Han, Seonho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper we interpreted the changes in wind field over complex mountainous terrains. The results of our study can be applied for predicting the direction of fire spread and for establishing strategies for fire prevention. The study area is bounded by $12{\times}12$ km domains of the Samcheok's long-term ecological research (LTER) site located in the east coast, in which a large-fire had occurred from 7 to 13 April 2000. Because of the area's complex topography, we compared the result of the Weather Research and Forecasting (WRF) mesoscale model with those observed by four automated weather stations. The WRF simulation overestimated the wind speed by 5 to 8 m/s (~200%) in comparison with those from four automated weather stations. The wind directions observed by the AWSs were from various directions whereas those from WRF model were mostly west wind at all stations. Overall, the simulations by the WRF mesoscale models were not appropriate for the estimation of microscale wind fields over complex mountainous areas. To overcome such inadequacy of reproducing the wind fields, we employed the ENVI-met model over Samcheok's LTER site. In order to test the model's sensitivity with the terrain effects, experimental simulations were conducted with various initial conditions. The simulation results of the ENVI-met model showed a reasonable agreement in wind speeds (about 70% accuracy) with those of the four AWSs. Also, that the variations in wind directions agreed reasonably well with changes in terrain effect. We concluded that the ENVI-met model is more appropriate in representing the microscale wind field over complex mountain terrains, which is required to predict fire spread and to establish strategies for forest fire prevention.

Study on Dispersion Characteristics for Fire Scenarios in an Urban Area Using a CFD-WRF Coupled Model (CFD-WRF 접합 모델을 이용한 도시 지역 화재 시나리오별 확산 특성 연구)

  • Choi, Hee-Wook;Kim, Do-Yong;Kim, Jae-Jin;Kim, Ki-Young;Woo, Jung-Hun
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • The characteristics of flow and pollutant dispersion for fire scenarios in an urban area are numerically investigated. A computational fluid dynamics (CFD) model coupled to a mesoscale weather research and forecasting (WRF) model is used in this study. In order to more accurately represent the effect of topography and buildings, the geographic information system (GIS) data is used as an input data of the CFD model. Considering prevailing wind, firing time, and firing points, four fire scenarios are setup in April 2008 when fire events occurred most frequently in recent five years. It is shown that the building configuration mainly determines wind speed and direction in the urban area. The pollutant dispersion patterns are different for each fire scenario, because of the influence of the detailed flow. The pollutant concentration is high in the horse-shoe vortex and recirculation zones (caused by buildings) close to the fire point. It thus means that the potential damage areas are different for each fire scenario due to the different flow and dispersion patterns. These results suggest that the accurate understanding of the urban flow is important to assess the effect of the pollutant dispersion caused by fire in an urban area. The present study also demonstrates that CFD model can be useful for the assessment of urban environment.

Development of Optimal Modeling System for Analyzing Mountain Micrometeorology (산림 미기상 해석을 위한 최적모델 개발)

  • Lee, SukJun;choi, YongHan;Jung, JeaHee;Won, MyoungSoo;Lim, Gyu-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.165-172
    • /
    • 2015
  • The extreme weather conditions become frequent and severe with global warming. To prevent and cope forest disaster like a forest fire, we need an accurate micrometeorological prediction system for mountainous regions. This study addressed the forest fires occurred at Bonghwa and Gangneung in March, 2013. We constructed and optimized the prediction system that were required to interpret and simulate the forest micrometeorology. At first, we examined WRF physical sensitivity. Subsequently, KMA AWS observation data were assimilated using three-dimensional variation data assimilation method. The effectiveness of the assimilation was examined by using AWS observations enhanced with the Forest Research Institute observations. Finally, The 100 meters spatial resolution wind data were obtained by using the MUKLIMO for the given wind vector from WRF.

Numerical Experiment on the Variation of Atmospheric Circulation due to Wild Fire (산불 발화에 따른 하층 대기 순환장 변화에 관한 수치 실험)

  • Lee, Hwa-Woon;Tak, Sung-Hoon;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2013
  • In order to clarify the impact of wildfire and its thermal forcing on atmospheric wind and temperature patterns, several numerical experiments were carried out using three dimensional atmospheric dynamic model WRF with wildfire parametrization module SFIRE. Since wind can accelerate fire spread speed, the moving speed of fireline is faster than its initial values, and the fireline tends to move the northeast, because of the wind direction and absolute vorticity conservation law associated with driving force induced by terrain. In comparison with non-fire case, the hydraulic jump that often occurs over downwind side of mountain became weak due to huge heat flux originated by surface wildfire and wind pattern over downwind side of mountain tends to vary asymmetrically with time passing. Therefore temporal variation of wind pattern should be catched to prevent the risk of widfire.

Future Changes of Wildfire Danger Variability and Their Relationship with Land and Atmospheric Interactions over East Asia Using Haines Index (Haines Index를 이용한 동아시아 지역 산불 확산 위험도 변화와 지표-대기 상호관계와의 연관성 연구)

  • Lee, Mina;Hong, Seungbum;Park, Seon Ki
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.131-141
    • /
    • 2013
  • Many studies have related the recent variations of wildfire regime such as the increasing number of occurrances, their patterns and timing changes, and the severity of their extreme cases with global warming. However, there are only a few numbers of wildfire studies to assess how the future wildfire regime will change in the interactions between land and atmosphere with climate change especially over East Asia. This study was performed to estimate the future changing aspect of wildfire danger with global warming, using Haines Index (HI). Calculated from atmospheric instability and dryness, HI is the potential of an existing fire to become a dangerous wildfire. Using the Weather Research and Forecasting (WRF) model, two separated 5-year simulations of current (1995~1999) and far future (2095~2099) were performed and analyzed. Community Climate System Model 3 (CCSM3) model outputs were utilized for the model inputs for the past and future over East Asia; future prediction was driven under the IPCC A1B scenario. The results indicate changes of the wildfire danger regime, showing overall decreasing the wildfire danger in the future but intensified regional deviations between north and south. The overall changes of the wildfire regime seems to stem from atmospheric dryness which is sensitive to soil moisture variation. In some locations, the future wildfire danger overall decreases in summer but increases in winter or fall when the actual fire occurrence are generally peaked especially in South China.