• 제목/요약/키워드: WRF model simulation

검색결과 103건 처리시간 0.024초

영동 지역 해풍 사례를 대상으로 수행한 지면 피복 자료에 따른 WRF 모델의 민감도 분석 (WRF Sensitivity Experiments on the Choice of Land Cover Data for an Event of Sea Breeze Over the Yeongdong Region)

  • 하원실;이재규
    • 대기
    • /
    • 제21권4호
    • /
    • pp.373-389
    • /
    • 2011
  • This research focuses on the sensitivity of the WRF(Weather Research and Forecasting) Model according to three different land cover data(USGS(United States Geological Survey), MODIS(Moderate Resolution Imaging Spectroradiometer)30s+USGS, and KLC (Korea Land Cover)) for an event of sea breeze, occurred over the Gangwon Yeongdong region on 13 May 2009. Based on the observation, the easterly into Gangneung, due to the sea-breeze circulation, was identified between 1000 LST and 1640 LST. It did not reach beyond the Taebaek Mountain Range and thus the easterly was not observed near Daegwallyeong. On the other hand, the numerical simulations utilizing land cover data of USGS, MODIS30s+USGS, and KLC showed easterlies beyond the Taebaek Mountain Range up to Daegwallyeong. In addition, rather different penetration distances of each easterly, and different timings of beginning and ending of sea breeze were identified among the simulations. The Bias, MAE(Mean Absolute Error) and RMSE(Root Mean Square Error) of the wind from WRF simulation using MODIS30s+USGS land cover data were the least among the simulations particularly over Gangwon Yeongdong coastal area(Sokcho, Gangneung and Donghae), while those of the wind over the Gangwon Mountain area(Daegwallyeong and Jinbu) from the simulation using KLC land cover data were the least among them. The wind field over Gangwon Yeongdong coastal area from the simulation using USGS land cover data was rather poor among them.

국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가 (The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation)

  • 이승재;송지애;김유정
    • 한국농림기상학회지
    • /
    • 제18권4호
    • /
    • pp.307-319
    • /
    • 2016
  • 국가농림기상센터(NCAM)에서는 수요자 맞춤형 영농 영림을 지원하기 위하여 전용 수치모델링시스템인 지면대기모델링패키지(LAMP) 버전 1을 구축하였다. 이 패키지는 두 가지의 큰 축으로 구성되어 있다. 하나는 WRF 기상모델과 Noah-MP 지면모델의 결합시스템인 WRF/Noah-MP 시스템이고, 다른 하나는 Noah-MP 지면 모델의 오프라인 독립구동형 1차원 버전이다. 전자는 7일 이상의 중기 기상예측 자료를 1km 내외의 고해상도로 생산하는 일을 담당하고, 후자는 대표적인 농림생태계에 대하여 1년 지면모의 자료를 15분 간격으로 생산하는 일을 담당한다. 본 연구의 목적은 NCAM-LAMP의 두 구성 요소를 간단히 설명하고, 초기의 수치모의 성능을 평가하는데 있다. WRF/Noah-MP 결합시스템은 동아시아를 포함하는 어미격자 도메인에 최고 810m의 수평 해상도를 갖는 3개의 둥지격자로 구축되었으며, 가장 안쪽 도메인은 광릉 활엽수림 관측지와 침엽수림 관측지(GDK 및 GCK)를 포함한다. 이 결합시스템은 현재 미국 환경예측센터의 FNL 자료를 초기 및 경계자료로 이용하여 구동되며, 여러 개의 약 8일 모의 결과를 연결시켜 장기간에 대한 모의 자료를 생산하였다. 정량적 검증 변수는 WRF/Noah-MP 결합시스템의 2m 기온, 10m 바람, 2m 습도, 강수이며, 기상청 ASOS 관측 자료와 WRF/Noah-MP 결합시스템 모의 자료 사이의 차이를 이용하여 각 도메인에서 동적 식생 포함 유무에 따른 모의 오차를 계산하였다. 강수 모의의 정확도는 탐지확률(POD)과 공평위협점수(ETS)로 구성된 표를 이용하여 조사하였다. 오프라인 독립구동형 지면모델은 1년 기간에 대해 모의 결과를 생산하였으며, KoFlux 관측자료와 비교하여, 순복사 플럭스, 현열 플럭스, 잠열 플럭스 및 토양 수분 함량을 평가하였다. WRF/Noah-MP 결합시스템의 모의 결과에 따르면, 모든 도메인 중에서 도메인 4(810m 해상도)에서 2m 기온, 10m 바람 및 2m 습도에 대하여 가장 작은 RMSE를 보였다. 동적 식생을 포함시키면 모든 도메인에서 10m 바람의 모의 오차가 감소하게 되는 경향을 보였다. 도메인 2(7,290m 해상도)에서는 강수 모의 점수가 가장 높았으나, 동적 식생을 포함시킴에 따른 효과는 별로 없었다. 독립구동형 1차원 Noah-MP의 지면모의 결과는 복사 플럭스와 토양 수분의 패턴 및 크기를 포착하였으며, 엽면적지수의 모델 입력 부분을 보충하고, 모델 물리과정의 적절한 조합을 찾아내는 노력을 통해 개선될 수 있는 여지를 남겼다.

Refined numerical simulation in wind resource assessment

  • Cheng, Xue-Ling;Li, Jun;Hu, Fei;Xu, Jingjing;Zhu, Rong
    • Wind and Structures
    • /
    • 제20권1호
    • /
    • pp.59-74
    • /
    • 2015
  • A coupled model system for Wind Resource Assessment (WRA) was studied. Using a mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, global-scale data were downscaled to the inner nested grid scale (typically a few kilometers), and then through the coupling Computational Fluid Dynamics (CFD) mode, FLUENT. High-resolution results (50 m in the horizontal direction; 10 m in the vertical direction below 150 m) of the wind speed distribution data and ultimately refined wind farm information, were obtained. The refined WRF/FLUENT system was then applied to assess the wind resource over complex terrain in the northern Poyang Lake region. The results showed that the approach is viable for the assessment of wind energy.

WRF 기상자료의 토양수분 모형 적용을 통한 밭 토양수분 및 필요수량 산정 (Estimation of Soil Moisture and Irrigation Requirement of Upland using Soil Moisture Model applied WRF Meteorological Data)

  • 홍민기;이상현;최진용;이성학;이승재
    • 한국농공학회논문집
    • /
    • 제57권6호
    • /
    • pp.173-183
    • /
    • 2015
  • The aim of this study was to develop a soil moisture simulation model equipped with meteorological data enhanced by WRF (Weather Research and Forecast) model, and this soil moisture model was applied for quantifying soil moisture content and irrigation requirement. The WRF model can provide grid based meteorological data at various resolutions. For applicability assessment, comparative analyses were conducted using WRF data and weather data obtained from weather station located close to test bed. Water balance of each upland grid was assessed for soils represented with four layers. The soil moisture contents simulated using the soil moisture model were compared with observed data to evaluate the capacity of the model qualitatively and quantitatively with performance statistics such as correlation coefficient (R), coefficient of determination (R2) and root mean squared error (RMSE). As a result, R is 0.76, $R^2$ is 0.58 and RMSE 5.45 mm in soil layer 1 and R 0.61, $R^2$ 0.37 and RMSE 6.73 mm in soil layer 2 and R 0.52, $R^2$ 0.27 and RMSE 8.64 mm in soil layer 3 and R 0.68, $R^2$ 0.45 and RMSE 5.29 mm in soil layer 4. The estimated soil moisture contents and irrigation requirements of each soil layer showed spatiotemporally varied distributions depending on weather and soil texture data incorporated. The estimated soil moisture contents using weather station data showed uniform distribution about all grids. However the estimated soil moisture contents from WRF data showed spatially varied distribution. Also, the estimated irrigation requirements applied WRF data showed spatial variabilities reflecting regional differences of weather conditions.

대기예보모형과 진단모형 결합을 통한 복잡지형 바람장 해석능력 평가 (Skillful Wind Field Simulation over Complex Terrain using Coupling System of Atmospheric Prognostic and Diagnostic Models)

  • 이화운;김동혁;이순환;김민정;박순영;김현구
    • 한국환경과학회지
    • /
    • 제19권1호
    • /
    • pp.27-37
    • /
    • 2010
  • A system coupled the prognostic WRF mesoscale model and CALMET diagnostic model has been employed for predicting high-resolution wind field over complex coastal area. WRF has three nested grids down to from during two days from 24 August 2007 to 26 August 2007. CALMET simulation is performed using both initial meteorological field from WRF coarsest results and surface boundary condition that is Shuttle Radar Topography Mission (SRTM) 90m topography and Environmental Geographic Information System (EGIS) 30m landuse during same periods above. Four Automatic Weather System (AWS) and a Sonic Detection And Ranging (SODAR) are used to verify modeled wind fields. Horizontal wind fields in CM_100m is not only more complex but better simulated than WRF_1km results at Backwoon and Geumho in which there are shown stagnation, blocking effects and orographically driven winds. Being increased in horizontal grid spacing, CM_100m is well matched with vertically wind profile compared SODAR. This also mentions the importance of high-resolution surface boundary conditions when horizontal grid spacing is increased to produce detailed wind fields over complex terrain features.

화산재해 피해 예측 시스템의 성능 향상을 위한 파이프라인 기반 워크플로우 (Workflow Based on Pipelining for Performance Improvement of Volcano Disaster Damage Prediction System)

  • 허대영;이동환;황선태
    • 정보과학회 논문지
    • /
    • 제42권3호
    • /
    • pp.281-288
    • /
    • 2015
  • 화산재해 피해 예측 시스템은 기상과 화산분화 시뮬레이션 결과를 기반으로 화산재해대응을 위한 판단을 도와주는 시스템이다. 이 시스템에서 Fall3D라는 프로그램은 기상정보를 바탕으로 화산분화 이후 화산재의 확산예측결과를 생성하고 기상정보를 생성하기 위해 WRF라는 기상수치예보모델을 사용한다. 두 시뮬레이션의 프로그램을 수정하지 않고, 전체 실행시간을 줄이기 위해서는 WRF의 기상예측모델의 시간별 부분결과가 발생할 때마다 Fall3D를 부분수행 할 수 있도록 하는 파이프라이닝 방식을 생각할 수 있다. 이를 위해서 Fall3D와 같은 후속계산은 선행계산의 부분결과가 생성될 때까지 일시정지하고, 계산에 필요한 정보가 발생하면 재개할 수 있어야한다. 비록 Fall3D가 이런 일시정지와 재개기능을 가지고 있지는 않지만 그 이전 계산을 이어서 진행할 수 있는 재시작기능을 활용하여 파이프라이닝 효과를 낼 수 있다. 본 논문에서는 이러한 실행 형태를 제어할 수 있는 워크플로우를 제안한다.

기상-식생 모델을 이용한 연안 분지 도시 지역의 대기 중 CO2 시뮬레이션 (Simulation of Atmospheric CO2 Over Coastal Basin Urban Areas Using Meteorology-Vegetation Model)

  • 박창현;이화운
    • 한국환경과학회지
    • /
    • 제26권6호
    • /
    • pp.729-739
    • /
    • 2017
  • The Weather Research and Forecasting (WRF) model and Vegetation Photosynthesis and Respiration Model (VPRM) were coupled to simulate atmospheric $CO_2$ concentrations. The performance of the WRF-VPRM to simulate regional scale $CO_2$ concentration was estimated over coastal basin areas. Either Hestia 2011(HST) or Vulcan 2002(VUL) anthropogenic $CO_2$ emission data were used in two numerical experiments for the study regions. Simulated meteorological variables were validated with ground and background $CO_2$ measurement data, and the results show that the model captured temporal variations of $CO_2$ concentration on a daily basis. $CO_2$ directional analysis revealed that the dominant $CO_2$ emission sources are located S and SW. The simulated Net Ecosystem Exchange (NEE) agreed relatively well with measured $CO_2$ fluxes at each vegetation class site, showing approximately 40% at max improvement at shrub areas.

WRF / ENVI-met 통합모형을 적용한 도시 공원의 경계 조건 및 열역학적 영향 분석 연구 (Study on the Impacts of Lateral Boundary Conditions and Thermodynamics of Urban Park using Coupling System of WRF / ENVI-met)

  • 이태진;유정우;이화운;원효성;이순환
    • 한국환경과학회지
    • /
    • 제26권4호
    • /
    • pp.493-507
    • /
    • 2017
  • Since the late 20th century, the urbanization in Korea has been rapidly increasing, especially in major cities like Seoul, as a result of industrialization. One of the aspects of urbanization is coating the surfaces with impervious concrete or asphalt that water cannot penetrate. In addition, various urban, such as urban heat islands, which also have a great impact on the urban environment, occur within the cities. Therefore, the urban environment is gradually becoming hot and dry, and the need for more urban parks to compensate for these negative impacts is growing. Thus, several numerical studies have been conducted to assess these problems using coupled Numerical Weather Prediction (NWP) and Computational Fluid Dynamics (CFD). In this study, an experiment was conducted to determine the accuracy of the area of the input field using Weather Research and Forecasting (WRF) model, and applying the more accurate input field to a numerical simulation using ENVI-met, in order to investigate the effect of urban parks on the thermal comfort. The results showed that an input field with a larger area is more accurate than that with a smaller area, because the surrounding terrain and cities are considered in details in the experiment with the larger area. Subsequently, the more accurate input field was used in ENVI-met, and the results of this simulation showed that the presence of the urban park increased the thermal comfort and improved the humidity conditions.

극 저기압(Polar Low) 통과에 의해 발생한 남극 세종기지 강풍 사례 모의 연구 (A Numerical Simulation of Blizzard Caused by Polar Low at King Sejong Station, Antarctica)

  • 권하택;박상종;이솔지;김성중;김백민
    • 대기
    • /
    • 제26권2호
    • /
    • pp.277-288
    • /
    • 2016
  • Polar lows are intense mesoscale cyclones that mainly occur over the sea in polar regions. Owing to their small spatial scale of a diameter less than 1000 km, simulating polar lows is a challenging task. At King Sejong station in West Antartica, polar lows are often observed. Despite the recent significant climatic changes observed over West Antarctica, adequate validation of regional simulations of extreme weather events such as polar lows are rare for this region. To address this gap, simulation results from a recent version of the Polar Weather Research and Forecasting model (Polar WRF) covering Antartic Peninsula at a high horizontal resolution of 3 km are validated against near-surface meteorological observations. We selected a case of high wind speed event on 7 January 2013 recorded at Automatic Meteorological Observation Station (AMOS) in King Sejong station, Antarctica. It is revealed by in situ observations, numerical weather prediction, and reanalysis fields that the synoptic and mesoscale environment of the strong wind event was due to the passage of a strong mesoscale polar low of center pressure 950 hPa. Verifying model results from 3 km grid resolution simulation against AMOS observation showed that high skill in simulating wind speed and surface pressure with a bias of $-1.1m\;s^{-1}$ and -1.2 hPa, respectively. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation of Antartic weather systems and the near-surface meteorological instruments installed in King Sejong station can provide invaluable data for polar low studies over West Antartica.

관측과 기상모델을 이용한 춘천지역의 도시열섬현상 연구 (A Study of Urban Heat Island in Chuncheon Using WRF Model and Field Measurements)

  • 이종범;김재철;장윤정
    • 한국대기환경학회지
    • /
    • 제28권2호
    • /
    • pp.119-130
    • /
    • 2012
  • Heat island phenomena in Chuncheon (Korea) were investigated using air temperature measured by automatic weather stations and temperature dataloggers located at rural and urban sites. Numerical simulation of the phenomena was performed using Weather Research and Forecasting Urban Canopy Model (WRF-UCM) and results were compared with the observation. The model was initialized with NCEP/FNL data. The horizontal resolution of the fine domain is 0.33 km. The results of observational analyses show that the intensity of heat island was significantly higher during the nighttime than during the daytime. The highest measured temperature difference between rural and urban site is $3.49^{\circ}C$ and average temperature difference varies between 1.4 and $1.9^{\circ}C$. Good agreement was found between the simulated and observed temperatures. However, significantly overestimated wind speed was found at the urban sites. The linear regression analysis between observed and simulated temperature shows high correlation coefficient 0.96 for urban and 0.94 for rural sites while for wind speed, a very low correlation coefficient was found, 0.30 and 0.55 respectively.