• 제목/요약/키워드: WPT(wavelet packet transform)

검색결과 16건 처리시간 0.022초

LCD 라인의 음향 특성신호에 웨이브렛 변환과 인경신경망회로를 적용한 공정로봇의 건정성 감시 연구 (Condition Monitoring of an LCD Glass Transfer Robot Based on Wavelet Packet Transform and Artificial Neural Network for Abnormal Sound)

  • 김의열;이상권;장지욱
    • 대한기계학회논문집A
    • /
    • 제36권7호
    • /
    • pp.813-822
    • /
    • 2012
  • LCD 생산라인의 공정 로봇에서 방사되는 비정상 작동 소음은 로봇의 결함 탐지에 사용된다. 이 신호의 장점은 상대적으로 낮은 민감도에 비해 단지 마이크로폰을 이용하여 다수의 결함을 확인할 수 있는 것이다. 결함요소 추출을 위한 웨이브렛 변환(WPT)과 불량의 분류를 위한 인공신경망 회로(ANN)이 본 논문에서 사용되었다. 결과적으로, 비정상 작동 소음이 기계요소의 결함 진단에 효율적으로 사용될 수 있다.

Characterizing the damage mechanisms in mode II delamination in glass/epoxy composite using acoustic emission

  • Dastjerdi, Parinaz Belalpour;Ahmadi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제67권5호
    • /
    • pp.545-553
    • /
    • 2018
  • Mode II delamination propagation is an important damage mode in laminated composites and this paper aims to investigate the behavior of this damage in laminated composite materials using acoustic emission (AE) technique. Three different lay-ups of glass/epoxy composites were subjected to mode II delamination propagation and generated AE signals were recorded. In order to investigate the propagation of delamination behavior of these specimens, AE signals were analyzed using Wavelet Packet Transforms (WPT) and Fast Fourier Transform (FFT). In addition, conventional AE analyses were used to enhance understanding of the propagation of delamination damage. The results indicate that different fracture mechanisms were the main cause of the AE signals. The dominant mechanisms in all the specimens were matrix cracking, fiber/matrix debonding and fiber breakage, with varying percentage of the damage mechanisms for each lay-up. Scanning Electron Microscopy (SEM) observations were in accordance to the AE results.

웨이블릿 패킷 기반의 컬러화 알고리즘에서 슈도랜덤코드 삽입을 이용한 채도 보상 방법 (Saturation Compensating Method by Embedding Pseudo-Random Code in Wavelet Packet Based Colorization)

  • 고경우;장인수;경왕준;하영호
    • 대한전자공학회논문지SP
    • /
    • 제47권4호
    • /
    • pp.20-27
    • /
    • 2010
  • 본 논문에서는 웨이블릿 패킷 변환(WPT) 기반의 컬러화 알고리즘에서 슈도랜덤코드(pseudo-random code) 정보의 삽입을 통해 복원된 컬러 영상에서 채도를 보상하는 방법을 제안한다. 우선 컬러 영상을 흑백 영상으로 변환하는 과정(컬러-그레이변환)에서 RGB 영상을 YCbCr 영상으로 변환한 후, Y 영상에 2레벨 웨이블릿 패킷 변환을 적용하여 정보량이 최소인 부영역(수평의 수직, 수직의 수평 부영역)에 CbCr 영상을 삽입한다. 이때 프린팅 및 스캐닝 과정에서 발생하는 채도 열화를 보상하기 위해 원본 영상 CbCr의 최대값 및 최소값을 슈도랜덤코드 형태로 변환하여 대각의 대각 부영역에 역시 삽입한다. 슈도랜덤코드는 CbCr의 최대값 및 최소값을 흰색 점의 개수로 표현한 영상으로, 컬러 복원 과정(그레이-컬러변환)에서 이를 추출하여 원본의 CbCr 최대값 및 최소값과 복원 영상의 CbCr 최대값 및 최소값과의 비를 가중치로 이용함으로써 채도 보상 알고리즘을 수행한다. 실험을 통해 제안된 방법이 복원된 컬러 영상에서 채도를 향상시킴을 색차와 PSNR 수치로 확인할 수 있었다.

결정결합 방법을 이용한 전력외란 신호의 식별 (Power Quality Disturbance Classification using Decision Fusion)

  • 김기표;김병철;남상원
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.915-918
    • /
    • 2000
  • In this paper, we propose an efficient feature vector extraction and decision fusion methods for the automatic classification of power system disturbances. Here, FFT and WPT(wavelet packet transform) are und to extract an appropriate feature for classifying power quality disturbances with variable properties. In particular, the WPT can be utilized to develop an adaptable feature extraction algorithm using best basis selection. Furthermore. the extracted feature vectors are applied as input to the decision fusion system which combines the decisions of several classifiers having complementary performances, leading to improvement of the classification performance. Finally, the applicability of the proposed approach is demonstrated using some simulations results obtained by analyzing power quality disturbances data generated by using Matlab.

  • PDF

SVM-based Drone Sound Recognition using the Combination of HLA and WPT Techniques in Practical Noisy Environment

  • He, Yujing;Ahmad, Ishtiaq;Shi, Lin;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.5078-5094
    • /
    • 2019
  • In recent years, the development of drone technologies has promoted the widespread commercial application of drones. However, the ability of drone to carry explosives and other destructive materials may bring serious threats to public safety. In order to reduce these threats from illegal drones, acoustic feature extraction and classification technologies are introduced for drone sound identification. In this paper, we introduce the acoustic feature vector extraction method of harmonic line association (HLA), and subband power feature extraction based on wavelet packet transform (WPT). We propose a feature vector extraction method based on combined HLA and WPT to extract more sophisticated characteristics of sound. Moreover, to identify drone sounds, support vector machine (SVM) classification with the optimized parameter by genetic algorithm (GA) is employed based on the extracted feature vector. Four drones' sounds and other kinds of sounds existing in outdoor environment are used to evaluate the performance of the proposed method. The experimental results show that with the proposed method, identification probability can achieve up to 100 % in trials, and robustness against noise is also significantly improved.

센서퓨젼 기반의 인공신경망을 이용한 드릴 마모 모니터링 (Sensor Fusion and Neural Network Analysis for Drill-Wear Monitoring)

  • ;권오양
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.77-85
    • /
    • 2008
  • The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage. In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis. Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network analysis.