• Title/Summary/Keyword: WPP

Search Result 41, Processing Time 0.025 seconds

Method for Applying Wavefront Parallel Processing on Cubemap Video (큐브맵 영상에 Wavefront 병렬 처리를 적용하는 방법)

  • Hong, Seok Jong;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.401-404
    • /
    • 2017
  • The 360 VR video has a format of a stereoscopic shape such as an isometric shape or a cubic shape or a cubic shape. Although these formats have different characteristics, they have in common that the resolution is higher than that of a normal 2D video. Therefore, it takes much longer time to perform coding/decoding on 360 VR video than 2D Video, so parallel processing techniques are essential when it comes to coding 360 VR video. HEVC, the state of art 2D video codec, uses Wavefront Parallel Processing (WPP) technology as a standard for parallelization. This technique is optimized for 2D videos and does not show optimal performance when used in 3D videos. Therefore, a suitable method for WPP is required for 3D video. In this paper, we propose WPP coding/decoding method which improves WPP performance on cube map format 3D video. The experiment was applied to the HEVC reference software HM 12.0. The experimental results show that there is no significant loss of PSNR compared with the existing WPP, and the coding complexity of 15% to 20% is further reduced. The proposed method is expected to be included in the future 3D VR video codecs.

Fault Response of a DFIG-based Offshore Wind Power Plant Taking into Account the Wake Effect

  • Kim, Jinho;Lee, Jinsik;Suh, Yongsug;Lee, Byongjun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.827-834
    • /
    • 2014
  • In order to meet the low voltage ride-through requirement in a grid code, a wind power plant (WPP) has to stay connected to a grid, supporting the voltage recovery for a grid fault. To do this, a plant-level controller as well as a wind generator (WG) controller is essential. The dynamic response of a WPP should be analyzed in order to design a plant-level controller. The dynamic response of a WPP for a grid fault is the collective response of all WGs, which depends on the wind speed approaching the WG. Thus, the dynamic response of a WPP should be analyzed by taking the wake effect into consideration, because different wind speeds at WGs will result in different responses of the WPP. This paper analyzes the response of a doubly fed induction generator (DFIG)-based offshore WPP with a grid fault taking into account the wake effect. To obtain the approaching wind speed of a WG in a WPP, we considered the cumulative impact of multiple shadowing and the effect of the wind direction. The voltage, reactive power, and active power at the point of common coupling of a 100 MW DFIG-based offshore WPP were analyzed during and after a grid fault under various wind and fault conditions using an EMTP-RV simulator. The results clearly demonstrate that not considering the wake effect leads to significantly different results, particularly for the reactive power and active power, which could potentially lead to incorrect conclusions and / or control schemes for a WPP.

Assessment of Wind Power Prediction Using Hybrid Method and Comparison with Different Models

  • Eissa, Mohammed;Yu, Jilai;Wang, Songyan;Liu, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1089-1098
    • /
    • 2018
  • This study aims at developing and applying a hybrid model to the wind power prediction (WPP). The hybrid model for a very-short-term WPP (VSTWPP) is achieved through analytical data, multiple linear regressions and least square methods (MLR&LS). The data used in our hybrid model are based on the historical records of wind power from an offshore region. In this model, the WPP is achieved in four steps: 1) transforming historical data into ratios; 2) predicting the wind power using the ratios; 3) predicting rectification ratios by the total wind power; 4) predicting the wind power using the proposed rectification method. The proposed method includes one-step and multi-step predictions. The WPP is tested by applying different models, such as the autoregressive moving average (ARMA), support vector machine (SVM), and artificial neural network (ANN). The results of all these models confirmed the validity of the proposed hybrid model in terms of error as well as its effectiveness. Furthermore, forecasting errors are compared to depict a highly variable WPP, and the correlations between the actual and predicted wind powers are shown. Simulations are carried out to definitely prove the feasibility and excellent performance of the proposed method for the VSTWPP versus that of the SVM, ANN and ARMA models.

Coordinated voltage control of a DFIG-based Wind Power Plant to suppress the overvoltage after a fault clearance (사고 제어 이후 과전압 억제를 위한 DFIG 풍력단지의 협조 전압제어)

  • Park, Geon;Kim, Jinho;Kang, Yong Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.175-176
    • /
    • 2015
  • This paper presents a coordinated control scheme of a doubly-fed induction generator (DFIG)-based wind power plant (WPP) to suppress the overvoltage after a fault clearance. To achieve this, the variation of the terminal voltage at a fault clearance is captured and used to DFIG and WPP controllers. As a result, DFIGs within a WPP suppress the overvoltage rapidly by reducing the reactive power injection. The performance of the proposed scheme was investigated for a 100 MW WPP consisting of 20 units of 5 MW DFIGs for a grid fault. The results show the proposed scheme successfully suppresses the overvoltage at the point of interconnection.

  • PDF

Hierarchical Voltage Control of a Wind Power Plant Using the Adaptive IQ-V Characteristic of a Doubly-Fed Induction Generator

  • Kim, Jinho;Park, Geon;Seok, Jul-Ki;Lee, Byongjun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.504-510
    • /
    • 2015
  • Because wind generators (WGs) in a wind power plant (WPP) produce different active powers due to wake effects, the reactive power capability of each WG is different. This paper proposes a hierarchical voltage control scheme for a WPP that uses a WPP controller and WG controller. In the proposed scheme, the WPP controller determines a voltage error signal by using a PI controller and sends it to a doubly-fed induction generator (DFIG). Based on the reactive current-voltage ($I_Q-V$) characteristic of a DFIG, the DFIG injects an appropriate reactive power corresponding to the voltage error signal. To enhance the voltage recovery capability, the gains of the $I_Q-V$ characteristic of a DFIG are modified depending on its reactive current capability so that a DFIG with greater reactive current capability may inject more reactive power. The proposed scheme enables the WPP to recover the voltage at the point of common coupling (PCC) to the nominal value within a short time after a disturbance by using the adaptive $I_Q-V$ characteristics of a DFIG. The performance of the proposed scheme was investigated for a 100 MW WPP consisting of 20 units of 5 MW DFIGs for small and larger disturbances. The results show the proposed scheme successfully recovers the PCC voltage within a short time after a disturbance.

Hierarchical Voltage Regulation of a DFIG-based Wind Power Plant Using a Reactive Current Injection Loop with the Maximum Voltage Dip for a Grid Fault (최대 전압 강하에 비례하는 무효전류 공급 루프를 이용한 DFIG 풍력단지의 계층전압제어)

  • Park, Geon;Kim, Jinho;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1334-1339
    • /
    • 2016
  • In a power grid that has a high wind power penetration, the fast voltage support of a wind power plant (WPP) during the grid fault is required to stabilize the grid voltage. This paper proposes a voltage control scheme of a doubly-fed induction generator (DFIG)-based WPP that can promptly support the voltage of the point of common coupling (PCC) of a WPP during the grid fault. In the proposed scheme, the WPP and DFIG controllers operate in a voltage control mode. The DFIG controller employs two control loops: a maximum voltage dip-dependent reactive current injection loop and a reactive power to voltage loop. The former injects the reactive power in proportion to the maximum voltage dip; the latter injects the reactive power in proportion to the available reactive power capability of a DFIG. The former improves the performance of the conventional voltage control scheme, which uses the latter only, by increasing the reactive power as a function of the maximum voltage dip. The performance of the proposed scheme was investigated for a 100-MW WPP consisting of 20 units of a 5-MW DFIG under various grid fault scenarios using an EMTP-RV simulator. The simulation results indicate that the proposed scheme promptly supports the PCC voltage during the fault under various fault conditions by increasing the reactive current with the maximum voltage dip.

Reserve distribution to maximize the kinetic energy of a wind power plant (풍력단지의 최대 운동에너지 보유를 위한 예비력 분배)

  • Yoon, Gihwan;Lee, Jinsik;Lee, Hyewon;Kang, Yong Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.179-180
    • /
    • 2015
  • High wind penetration might cause the frequency stability problem because a wind power plant (WPP) is operating in a maximum power tracking mode to extract the maximal energy from wind and thus does not react to the system frequency variation. Therefore, the system operators encourage a WPP to participate in frequency control, which includes inertia/orl and primary control. The frequency support capability of a WPP depends on the amount of kinetic energy (KE) and reserve. This paper formulates an optimization problem to maximize KE while retaining the required reserve. The proposed optimization problem would allow wind generators (WGs) with a smaller wind speed to retaine more KE. The performance of the proposed optimization problem was investigated in a 100-MW WPP consisting of 20 units of 5-MW permanent magnet synchronous generators using an EMTP-RV simulator. The results show that the proposed optimization problem successfully improves the frequency nadir more than a conventional reserve allocation that distributes WGs proportional to the current output.

  • PDF

A Credit Card based Payment Protocol Assuring End-to-End Security in Wireless Internet (무선인터넷에서의 종단간 보안을 제공하는 신용카드 기반의 지불 프로토콜)

  • 임수철;강상승;이병래;김태윤
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.6
    • /
    • pp.645-653
    • /
    • 2002
  • The WPP payment protocol uses the WAP protocol to enable credit card payment on the wireless internet. Since the security of the WAP protocol is based on the WTLS security protocol, there exists an end-to-end security weakness for the WPP payment protocol. This paper is suggesting a payment protocol, which is making use of the Public-Key Cryptosystem and the Mobile Gateway, so assuring end-to-end security independently of specific protocols. As the on-line certification authority is participating on the authentication process of the payment protocol, the suggested payment protocol enables wireless devices to get services from service providers on other domains.

Optimal Reserve Allocation to Maximize Kinetic Energy in a Wind Power Plant

  • Yoon, Gihwan;Lee, Hyewon;Lee, Jinsik;Yoon, Gi-Gab;Park, Jong Keun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1950-1957
    • /
    • 2015
  • Modern wind generators (WGs) are forced or encouraged to participate in frequency control in the form of inertial and/or primary control to improve the frequency stability of power systems. To participate in primary control, WGs should perform deloaded operation that maintains reserve power using speed and/or pitch-angle control. This paper proposes an optimization formulation that allocates the required reserve to WGs to maximize the kinetic energy (KE) stored in a wind power plant (WPP). The proposed optimization formulation considers the rotor speed margin of each WG to the maximum speed limit, which is different from each other because of the wake effects in a WPP. As a result, the proposed formulation allows a WG with a lower rotor speed to retain more KE in the WPP. The performance of the proposed formulation was investigated in a 100-MW WPP consisting of 20 units of 5-MW permanent magnet synchronous generators using an EMTP-RV simulator. The results show that the proposed formulation retains the maximum amount of KE with the same reserve and successfully increases the frequency nadir in a power system by releasing the stored KE in a WPP in the case of a disturbance.

Voltage Control for a Wind Power Plant Based on the Available Reactive Current of a DFIG and Its Impacts on the Point of Interconnection (이중여자 유도형 풍력발전기 기반 풍력단지의 계통 연계점 전압제어)

  • Usman, Yasir;Kim, Jinho;Muljadi, Eduard;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.23-30
    • /
    • 2016
  • Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gain of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.