• Title/Summary/Keyword: WPC

Search Result 149, Processing Time 0.03 seconds

Study on Quantitative Analysis of Wear Debris for Surface Modification Layers Ti(C,N) with Piston Ring on Diesel Engine Oil

  • Choi, Nag-Jung;Youn, Suk-Bum;Kim, Min-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1044-1051
    • /
    • 2009
  • During contact between surfaces, there is wear and the generation of wear. The particles contained in the lubricating oil carry detailed and important monitoring information about the condition of the machine. Therefore, this paper was undertaken for the Ferrography system of wear debris generated from a lubricated moving machine surface. The lubricating wear test was performed under different experimental conditions using the Falex wear test of the Pin and V-Block types by Ti(C,N) coated. It was shown from the test results that wear particle concentration(WPC), wear severity index(Is) and size distribution have come out all higher with increases in sliding friction time. With the Ferrogram thin leaf wear debris as well as ball and plate type wear particles were observed.

Wood Modification of Pinus densiflora Sieb, et Zucc. for korean traditional latticework by combined treatment of Acetylation followed by Styren-Methyl metacrylate impregnation (아세칠화 WPC 이중개질처리에 의한 전통창호 소나무재의 물성 개선)

  • Lee Hwa Hyoung;Lee Min Gyoung
    • Journal of the Korea Furniture Society
    • /
    • v.14 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • Wood cell-wall modification with acetic anhydride, lumen filled with styren monomer and methyl methacrylate, and a combination of these two treatments were studied for their effectiveness for dimensional stability. Compared to those of untreated Pinus densiflora Sieb. et Zucc and sole acetylated red pine, The combination of acetylation and impregnation with methy methacrylate greatly reduced water absorption, increased ASE to the best and gave better bending strength and compression strength.

  • PDF

Preparation and Characterization of Chemically Modified Wood Flour Reinforced Phenol-formaldehyde Composites

  • Nam, Byeong-Uk;Mun, Jun-Yeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • Wood Polymer Composites(WPC) have attracted significant attention because of ecological and environmental concerns. However, the structure of Wood Flour containing many hydroxyl groups(-OH) reduces the interface adhesion to Phenol-formaldehyde(PF) and it decreases the mechanical properties of the PF/Wood Flour Composites. The present work involves the modification of Wood Flour using silanes reinforced with Phenol-formaldehyde to enhance the mechanical properties of the composites. The spectroscopic properties of the composites were analyzed using FT-IR, XPS(X-ray Photoelectron Spectroscopy) and the mechanical properties i.e., tensile strength, flexural strength and impact strength were studied. We confirmed the modification effect of silanes by spectroscopic analysis, and the mechanical properties of the composites using wood flour modified by silanes were significantly improved.

Study on Wood-Plastic Combination - On the Penetration of MMA Polymer and Dimensional Stability - (복합목재(複合木材)(WPC)에 관(關)한 연구(硏究) - MMA Polymer의 침투(浸透)와 치수안정화(安定化) -)

  • Lee, Won-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.49-57
    • /
    • 1983
  • This study dealts with the penetration of methyl methacrylate(MMA) monomer-solvent system into five Korean major tree species, especially the Pinus koraiensis S. et Z., Pinus densiflora S. et Z., Larix leptoiepis Gordon, Quercus serrata Thunb. and Betula platyphylla var japonica Hara. In this report I described the results of the interaction between wood and polymer loading by catalyst-heat polymerization. On the other hand the influence of penetration of polymer loading on dimensional stabilization on WPC of Pinus koraiensis by catalyst-heat polymerization was also investigated.

  • PDF

Comparative Efficacy of Plant and Animal Protein Sources on the Growth Performance, Nutrient Digestibility, Morphology and Caecal Microbiology of Early-weaned Pigs

  • Yun, J.H.;Kwon, I.K.;Lohakare, J.D.;Choi, J.Y.;Yong, J.S.;Zheng, J.;Cho, W.T.;Chae, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1285-1293
    • /
    • 2005
  • The present study was conducted to evaluate and compare the effects of various animal and plant protein sources on piglet' performance, digestibility of amino acids and gut morphology in weaned pigs until 28 days after weaning. The plant protein sources used were soybean meal (SBM), fermented soy protein (FSP), rice protein concentrate (RPC); and animal protein sources tested were, whey protein concentrate (WPC) and fishmeal (FM). Iso-proteinous (21%) diets were formulated and lysine (1.55%) content was similar in all the diets. The level of each protein source added was 6% by replacing SBM to the same extent from the control diet containing 15% SBM. The ADG was higher (p<0.05) in the groups fed animal proteins as compared with plant proteins at all the levels of measurement, except during 15-28 days. The highest ADG was noted in WPC and FM fed diets and lowest in SBM fed diet. The feed intake was higher in animal protein fed groups than plant proteins at all phases, but the feed:gain ratio was not affected by protein sources except during overall (0 to 14 day) measurement which was improved (p<0.05) in animal protein fed diets compared to plant protein sources. The digestibilities of gross energy, dry matter and crude protein were higher in animal protein fed groups than for plant protein fed sources. The apparent ileal digestibilities of essential amino acids like Leu, Thr, and Met were significantly (p<0.05) higher in animal proteins fed animals as compared with plant protein fed animals. But the apparent fecal digestibilities of essential amino acids like Arg and Ile were significantly higher (p<0.05) in plant protein diets than animal protein sources. The villous structure studied by scanning electron microscope were prominent, straight finger-like, although shortened and densely located in FM fed group as compared with others. The lactic acid bacteria and C. perfringens counts were higher in caecal contents of pigs fed plant proteins than the animal proteins. Overall, it could be concluded that animal protein sources in the present study showed better effects on growth performance, nutrient digestibility and gut morphology than plant protein sources.

Human Effect for Commercial Wireless Power Transfer System Operating at Low Frequency (상용 자기유도방식 무선전력전송 시스템의 인체영향 분석)

  • Kang, Jun-Seok;Lee, Seungwoo;Hong, Ic-Pyo;Cho, In-Kui;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.382-390
    • /
    • 2017
  • In this paper, we consider particular exposure scenarios to evaluate human effects for inductive commercial wireless charging device operating at low frequency. The coil used in this study is the A10 model in Qi standard proposed by WPC(Wireless Power Consortium), and input power is 5 W to the operating frequency of 155 kHz. In perfectly aligned condition, the max leakage magnetic field is $257.58{\mu}T$ which is obtained at the side of the device, and it is exceeded about 7.4 times of the ICNIRP 1998 reference level. The SAR is evaluated with homogeneous phantom which has electric constants of wet skin. The max value of the SAR is $134.47{\mu}W/kg$ which is obtained at the side of the device also, and it is much lower than the international guidelines. Especially, it showed higher SAR values in case of misalignment condition, so we will need to consider the misalignment condition importantly when we evaluate human effects for wireless power transfer system.

A Study on the Thermal Flow Analysis for Heat Performance Improvement of a Wireless Power Charger (열 유동해석을 통한 무선충전기 발열 성능 향상에 관한 연구)

  • Kim, Pyeong-Jun;Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.310-316
    • /
    • 2019
  • In automotive application, customers are demanding high efficiency and various functions for convenience. The demand for these automotive applications is steadily increasing. In this study, it has been studied the analysis of heat flow to improve the PCB(printed circuit board) heating performance of WPC (wireless power charger) recently developed for convenience. The charging performance of the wireless charger has been reduced due to power dissipation and thermal resistance of PCB. Therefore, it has been proposed optimal PCB design, layout and position of electronic parts through the simulation of heat flow analysis and PCB design was analyzed and decided at each design stage. Then, the experimental test is performed to verify the consistency of the analysis results under actual environmental conditions. In this paper, The PCB modeling and heat flow simulation in transient response were performed using HyperLynx Thermal and FloTHERM. In addition, the measurement was performed using infrared thermal imaging camera and used to verify the analysis results. In the final comparison, the error between analysis and experiment was found to be less than 10 % and the heating performance of PCB was also improved.

A Case Study of Applying Mixture Experimental Design to Enhance Flame Retardancy of Wood-Plastic Composites (합성목재의 난연성 확보를 위한 혼합물 실험계획 사례)

  • Seo, Ho-Jin;Kwon, Minseo;Lee, Gun-Myung;Ju, Hyejin;Byun, Jai-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.1
    • /
    • pp.169-181
    • /
    • 2022
  • Purpose: This paper addresses a case study of developing a flame retardant wood-plastic composites (WPC) by adding tannic acid to the existing synthetic wood. The optimal mixing ratios of six components are explored to minimize the burning time using two mixture designs. Methods: In the preliminary experiment, six components are considered to find important components and their ranges. Seven D-optimal mixture design points are generated. Two points are removed for the balance of plastic components to be maintained, and the remaining five points are augmented with two basic compositions. Four components are selected to be considered in the main experiment. In the main experiment, pellets are extruded at the eight mixture design points. In-house testing of burning time is executed three times. Specimens made of pellets from two promising flame retardant compositions are sent to the accredited laboratories and tested. Results: The test results are as follows: 1) The best composition (Wood flour, Tannic acid, PE, Lubricant) = (25, 41, 10, 2) (wt%) shows the burning time of 1 second, which is 9-fold improvement compared to the the burning time of 9 seconds from the existing composition (58, 0, 10, 2) (wt%). 2) The second best composition (41, 25, 10, 2) (wt%) results in the burning time of 2 seconds. This composition is inferior to the best composition in terms of the flame retardancy, but more economical since it needs less tannic acid which is 100-fold expensive than the wood flour. Conclusion: Flame retardant compositions are found by adding tannic acid to the existing WPC employing optimal mixture designs. This case study will be helpful to practitioners who try to develop new products with additional physical properties with as small number of experimental trials as possible. Future research direction includes exploring conditions which satisfy both performance level and cost limitation simultaneously.

Textural and Organoleptic Properties of Tofu Manufactured with Micronized Full-fat Soyflour Fortified with Food Ingredients

  • Shim, Jae-Jin;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.3
    • /
    • pp.278-283
    • /
    • 2003
  • Textural properties of tofu manufactured with micronized full-fat soyflour (MFS) were enhanced by the addition of soy protein isolate, whey protein concentrate, chitosan oligosaccharide and mushroom powder. The MFS solution (14.2% solid content) was converted to semi-solid tofu by a two-stage heat treatment with the addition of 4% coagulant mix. The MFS tofu was evaluated by a compression test as well as sensory evaluation. To produce the semi-solid gel (MFS tofu) with reasonably high strength and toughness, the MFS solution with 14.2% solid content and 7.0% protein had to be heat treated at 121$^{\circ}C$ for 3min. The relative toughness of MFS tofu was increased by the addition of SPI, showing a 144% increase. The toughness of MFS tofu prepared with the MFS/SPI mixture was greatly increased by the addition of WPC at the level of 0.7% and the water separation from MFS tofu was greatly reduced. Furthermore, the toughness and strength of MFS/SPI tofu was enhanced by the addition of 0.1% chitosan oligosaccharide and 0.2% mushroom powder. The sensory evaluation of the tofu fortified with SPI, chitosan oligosaccharide and mushroom powder was superior to that of MFS tofu, with a higher score for overall preference.

A Study on the Effect of Expandable Graphite and Metal Hydroxides on the Properties of Wood Plastic Composites (WPCs) (팽창성 흑연과 금속수산화물이 목재·플라스틱 복합재의 특성에 미치는 영향에 관한 연구)

  • Kim, Seungkyun;Lee, Danbee;Lee, Sun-Young;Chun, Sang-Jin;Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.4
    • /
    • pp.392-398
    • /
    • 2016
  • Wood-plastic composites (WPCs) composed of mainly wood flour and thermoplastics have attracted considerable attentions due to advantages of cost effectiveness, high durability, and microbial resistance. However, relatively poor fire resistance of WPCs from low thermal stability of wood and plastics prevents further uses. This study investigated the effect of expandable graphite (EG) and aluminium hydroxide (AH)/magnesium hydroxide (MH) on the properties of WPCs. The combined incorporation of both EG and metal hydroxide (i.e., AH or MH) into formulations leads to higher flexural modulus of filled composites compared to neat PP and WPC. In thermal properties, EG played an important role in improving thermal stability of filled composites by suppressing thermal decompositions of wood and PP. Moreover, EG showed better water absorption features. From this research, it can be said that EG and metal hydroxides have potentials as effective reinforcement, flame retardant, and moisture barrier.