• Title/Summary/Keyword: WPC

Search Result 149, Processing Time 0.033 seconds

Quality Characteristics of Seolgiddeok added with Whey Protein Concentrate (WPC) Powder (WPC 분말이 첨가된 설기떡의 품질 특성)

  • Kim, Chan-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.3
    • /
    • pp.436-445
    • /
    • 2015
  • The effects of substituting whey protein concentrate (WPC) powder for rice flour in the preparation of seolgiddeok were determined by objective and subjective tests. Milk whey is drained from milk curd as a by-product of the cheese manufactureing process. Whey protein is known as a good nutritional source and is a functional material for many processed foods. WPC contains more than 80% whey protein. The moisture content decreased gradually during storage and the decrease in moisture was less in the control than in the WPC powder substituted groups. The color lightness (L) decreased significantly as the amount of WPC powder increased, wherease redness (a) and yellowness (b) both increased. Texture analyses revealed that the hardness, chewiness, gumminess and adhesiveness of seolgiddeok tended to increase in proportion to the amount of WPC powder in the formula. Seolgiddeok gelatinization was investigated by amylographing. Initial pasting temperature, peak viscosity, hot pasting viscosity and breakdown were low in seolgiddeok prepared with WPC powder substituted for rice flour. Setback had the lowest value in the control. Sensory evaluations revealed that, seolgiddeok prepared with 3% WPC powder had the highest overall acceptability score. These results indicated that WPC seolgiddeok with 3% WPC powder has the best quality.

Effects of Recycled PP Content on the Physical Properties of Wood/PP Composites (재활용 폴리프로필렌의 함량이 목분/폴리프로필렌 복합체의 물성에 미치는 영향)

  • Ahn, Seong Ho;Kim, Dae Su
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2014
  • In this study, the melt-mixing condition was optimized first to maximize the physical properties of a wood plastic composite (WPC) with recycled polypropylene (PP) and the effects of recycled PP content on the physical properties of the WPC were investigated. Mechanical properties of the WPC were measured by UTM and an izod impact tester and thermal properties were investigated by DSC, TGA and DMA. Fracture surfaces of the WPC were investigated by SEM. The optimized mixing condition of WPC with 50 wt% recycled PP of total PP was melt-mixing at $170^{\circ}C$ for 15 min at 60 rpm. With increasing the content of the recycled PP, the water absorption characteristics of the WPC increased and the thermal and mechanical properties decreased. However, the following was concluded from the analysis of all the physical properties; it was possible adding the recycled PP up to 50 wt% of total PP without a significant decrease in the performance of the WPC.

Effect of ${\gamma}-irradiation$ on the Physicochemical Properties of Soy Protein Isolate and Whey Protein Concentrate (감마선 조사가 Soy Protein Isolate와 Whey Protein Concentrate의 이화학적 성질에 미치는 영향)

  • Cho, Yong-Sik;Song, Kyung-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1488-1494
    • /
    • 1999
  • Effect of ${\gamma}-irradiation$ on the SDS-PAGE pattern, secondary structure content, the solubility of commercial soy protein isolate (SPI) and whey protein concentrate (WPC) was investigated. The change in the subunit molecular weight of SPI and WPC irradiated in aqueous solution or dried state was studied using SDS-PAGE. The SDS-PAGE pattern of SPI irradiated in aqueous solution revealed the fragmentation and aggregation of the subunit protein. For WPC irradiated in aqueous solution. fragmentation of the subunit protein up to 10 kGy was observed. In contrast, ${\gamma}-irradiation$ of SPI and WPC in dried state did not cause any significant changes in the SDS-PAGE pattern. The change In the secondary structure of irradiated SPI and WPC solution was studied using circular dichroism. The aperiodic structure content of SPI and WPC solution increased at higher irradiation doses, which suggests that ${\gamma}-irradiation$ caused the disruption of the ordered structure of SPI and WPC solution. Gamma-irradiation also caused the change in solubility of SPI and WPC in dried state.

  • PDF

Exploring Reliability of Wood-Plastic Composites: Stiffness and Flexural Strengths

  • Perhac, Diane G.;Young, Timothy M.;Guess, Frank M.;Leon, Ramon V.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.2
    • /
    • pp.153-173
    • /
    • 2007
  • Wood-plastic composites (WPC) are gaining market share in the building industry because of durability/maintenance advantages of WPC over traditional wood products and because of the removal of chromated copper arsenate (CCA) pressure-treated wood from the market. In order to ensure continued market share growth, WPC manufacturers need greater focus on reliability, quality, and cost. The reliability methods outlined in this paper can be used to improve the quality of WPC and lower manufacturing costs by reducing raw material inputs and minimizing WPC waste. Statistical methods are described for analyzing stiffness (tangent modulus of elasticity: MOE) and flexural strength (modulus of rupture: MOR) test results on sampled WPC panels. Descriptive statistics, graphs, and reliability plots from these test data are presented and interpreted. Sources of variability in the MOE and MOR of WPC are suggested. The methods outlined may directly benefit WPC manufacturers through a better understanding of strength and stiffness measures, which can lead to process improvements and, ultimately, a superior WPC product with improved reliability, thereby creating greater customer satisfaction.

  • PDF

Characteristics of Whey Protein (WPC-30) Hydrolysate from Cheese Whey (치즈유청으로부터 제조한 유청단백질 가수분해물의 특성에 관한 연구)

  • Yoon, Yoh-Chang;An, Sung-Il;Jeong, A-Ram;Han, Song-Ee;Kim, Myeong-Hee;Lee, Chang-Kwon
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.435-440
    • /
    • 2010
  • Whey protein concentrate (WPC) is widely used to increase the nutritional and functional properties of food. In this study, the physiochemical and functionality of WPC-30 hydrolysates were examined to evaluate the possibility of application in the food industry. The WPC-30 was manufactured using ultrafiltration and spray-drying, and then hydrolyzed with proteolytic enzyme including alcalase, flavourzyme, nuetrase and protamex. Enzymatic hydrolysis had a significant influence on the physicochemical properties as evident from the increased foaming capacity, solubility. Alcalase caused highest protein hydrolysis (3.26%) and the bitterness. Foaming capacity was largest in WPC-30 hydrolysate treated with flavourzyme. Protein solubility at various levels of pH was highest in protamex-treated WPC-30 hydrolysate. However, the solubility of WPC-30 hydrolysates was significantly improved in alkaline condition than in acidic and neutral conditions. The study revealed that spray dried enzyme modified WPC can be used in various functional food.

Determination of Wood Flour Content in WPC Through Thermogravimetic Analysis and Accelerator Mass Spectrometry (열중량 분석기와 질량가속기를 이용한 목재·플라스틱 복합재의 목질섬유함량 분석)

  • Gwon, Jae-Gyoung;Lee, Dan-Bee;Cho, Hye-Jung;Chun, Sang-Jin;Choi, Don-Ha;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.572-579
    • /
    • 2017
  • Determination of the wood content in wood plastic composite (WPC) is crucial to form reliable WPC market. WPC with simple formulation consisting of only two components (wood flour and polypropylene) was examined using thermogravimetric analysis (TGA) and accelerator mass spectrometry (AMS) for determining wood content in the WPC. TGA method using derivative peak temperature (DTp) of polypropylene under low heating rate ($5^{\circ}C/min$) showed more reliable calibration curve and lower error factor compared to method of using the percentage of weight loss of wood flour. In addition, AMS using bio-based carbon content showed greater reliability for the determination of wood content in the WPC in comparison with the TGA method.

Bioavailability of Iron-fortified Whey Protein Concentrate in Iron-deficient Rats

  • Nakano, Tomoki;Goto, Tomomi;Nakaji, Tarushige;Aoki, Takayoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1120-1126
    • /
    • 2007
  • An iron-fortified whey protein concentrate (Fe-WPC) was prepared by addition of ferric chloride to concentrated whey. A large part of the iron in the Fe-WPC existed as complexes with proteins such as ${\beta}$-lactoglobulin. The bioavailability of iron from Fe-WPC was evaluated using iron-deficient rats, in comparison with heme iron. Rats were separated into a control group and an iron-deficiency group. Rats in the control group were given the standard diet containing ferrous sulfate as the source of iron throughout the experimental feeding period. Rats in the iron-deficiency group were made anemic by feeding on an Fe-deficient diet without any added iron for 3 wk. After the iron-deficiency period, the iron-deficiency group was separated into an Fe-WPC group and a heme iron group fed Fe-WPC and hemin as the sole source of iron, respectively. The hemoglobin content, iron content in liver, hemoglobin regeneration efficiency (HRE) and apparent iron absorption rate were examined when iron-deficient rats were fed either Fe-WPC or hemin as the sole source of iron for 20 d. Hemoglobin content was significantly higher in the rats fed the Fe-WPC diet than in rats fed the hemin diet. HRE in rats fed the Fe-WPC diet was significantly higher than in rats fed the hemin diet. The apparent iron absorption rate in rats fed the Fe-WPC diet tended to be higher than in rats fed the hemin diet (p = 0.054). The solubility of iron in the small intestine of rats at 2.5 h after ingestion of the Fe-WPC diet was approximately twice that of rats fed the hemin diet. These results indicated that the iron bioavailability of Fe-WPC was higher than that of hemin, which seemed due, in part, to the different iron solubility in the intestine.

Quality Characteristics of Butter Sponge Cakes Added with Whey Protein Concentrate (WPC) (농축유청단백질 첨가 버터 스폰지케이크의 품질특성)

  • DaEun Choi;KyungHee Kim;EunRaye Jeon
    • Human Ecology Research
    • /
    • v.62 no.1
    • /
    • pp.59-68
    • /
    • 2024
  • This study investigated the quality characteristics of butter sponge cakes added with whey protein concentrate (WPC)(0%, 10%, 30%, 50%, 100%) added as a fat substitute. The density of the dough of butter sponge cakes significantly increased with higher levels of added WPC and the pH decreased (F=248.38, p<.001). The moisture content also decreased significantly (F=3.151, p < .05). However, the volume (F=9.556, p<.01) and specific volume (F=11.15, p<.001) significantly increased. With respect to color, there was no significant difference in the lightness (L) value of the crumb, but the redness (a) value increased significantly with higher levels of added WPC (F=12.616, p < .001), while the yellowness (b) value decreased significantly (F=4.550, p<.01). Regarding the crust, the L values (F=3.791, p<.01) and b values (F=7.000, p<.001) decreased significantly with higher levels of added WPC, while the (a) values increased significantly (F=4.706, p<.01). The DPPH radical scavenging ability of the raw WPC used in the manufacture of butter sponge cakes was found to be 27.45%, but this increased significantly as the amount of WPC added to butter sponge cakes increased (F=45.237, p<.001). In a consumer preference test, the flavor, appearance, texture, odor, and overall acceptability were highest in the case of WPC-10 when taking advantage of the functional advantages of WPC as a lowfat substitute, confirming the development potential and optimal amount of WPC that should be added to butter sponge cakes.

Properties of WPC Prepared with Various Size and Amount of Wood Particle (목편의 크기와 함량이 복합재료의 물성에 미치는 영향)

  • Kim, Chul-Hyun;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.59-64
    • /
    • 2008
  • The mechanical properties of WPC(wood plastic composite) should effected with the size of wood particle size and also characteristics of wood particles. In this paper, WPC were prepared with various size of wood particles and coupling agent and the mechanical properties were evaluated. The smaller size of wood particle were used for WPC, the higher properties of WPC in tensile strength and breaking elongation were obtained. The smaller amount of wood particle were used for WPC, the higher properties of WPC in tensile strength and breaking elongation were obtained.

Dynamic Headspace Analysis of Volatile Constituents of Swiss Cheese Whey Protein Concentrate

  • Ha, E.Y.W.;Lee, S.J.;Jung, E.J.;Lee. Y.B.;Morr, C.V.
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.3
    • /
    • pp.299-304
    • /
    • 2002
  • Volatile flavor compounds in the headspace of swiss cheese whey protein concentrate (WPC) were analyzed by dynamic headspace analyzer, gas chromatography, and mass spectrometer. Sixty one compounds were detected from the headspace of dry WPC and 23 compounds from the headspace of an aqueous solution of WPC. The major components were propanol, hexanal, 2-butanone, 2-pentanone, 2,3-butanedion, 2-propanol, acetic acid, dimethyl disulfide and benzothiazole. An external dynamic headspace sampler, devised for this study, effectively collected volatiles from the headspace of dry WPC and aqueous WPC solutions.