• 제목/요약/키워드: WO3

검색결과 720건 처리시간 0.044초

Electrical and Optical Properties of Asymmetric Dielectric/Metal/Dielectric (D/M/D) Multilayer Electrode Prepared by Radio-Frequency Sputtering for Solar Cells

  • Pandey, Rina;Lim, Ju Won;Lim, Keun Yong;Hwang, Do Kyung;Choi, Won Kook
    • 센서학회지
    • /
    • 제24권1호
    • /
    • pp.15-21
    • /
    • 2015
  • Transparent and conductive multilayer thin films consisting of three alternating layers FZTO/Ag/$WO_3$ have been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting oxides and the structural and optical properties of the resulting films were carefully studied. The single layer fluorine doped zinc tin oxide (FZTO) and tungsten oxide ($WO_3$) films grown at room temperature are found to have an amorphous structure. Multilayer structured electrode with a few nm Ag layer embedded in FZTO/Ag/$WO_3$ (FAW) was fabricated and showed the optical transmittance of 87.60 % in the visible range (${\lambda}=380{\sim}770nm$), quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$ and the corresponding figure of merit ($T^{10}/R_s$) is equivalent to $3.0{\times}10^{-2}{\Omega}^{-1}$. The resultant power conversion efficiency of 2.50% of the multilayer based OPV is lower than that of the reference commercial ITO. Asymmetric D/M/D multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

W 섬유강화(纖維强化) Al 합금기지(合金基地) 복합재(複合材)의 열(熱)cycle에 따른 계면거동(界面擧動)에 관(關)한 연구(硏究) (A Study on Interfacial Phenomena of Tungsten Fiber Reinforced Aluminium Matrix Composite under Thermal Cycles)

  • 허재근;김정태;현창용;김용석;김석윤
    • 열처리공학회지
    • /
    • 제7권3호
    • /
    • pp.169-174
    • /
    • 1994
  • The reaction layer formed at interface between matrix and fiber has significant effects on the mechanical properties and behaviors of deformation m FRM. In this study, the mechanical properties and interfacial behaviors according to surface finishing on the fibers and according to heat treatment in FRM were investigated. FRM was fibricated by diffusion bonding method. In W/Al alloy composite and W/Al composite, W of which was coated with $WO_3$, the heat treatment was carried out thermal cycling method from 373K to 673K. In W/Al composite, W of which was coated with $WO_3$, growth of interface layer was hardly occured in spite of the increasing various thermal cycles. It was exhibited that oxidized W/Al composite were higher strength than non-oxidezed W/Al composite with the increasing thermal cycles. The compounds of fiber/matrix interface were analyzed into $WAl_{12}$, $WAl_7$, and $AlWO_3$, respectivly. Therefore the interfacial compounds of fiber/matrix seriously affected the mechanical properties and behaviors of deformation in FRM.

  • PDF

비정복성 관절원판 전위와 연관되어 발생된 전치부 개교합 환자의 측방 두부방사선 계측 (Cephalometric Characteristics of the Patients with Developed Anterior Open Bite Following Anterior Disc Dislocation without Reductions)

  • 허윤경;최재갑
    • Journal of Oral Medicine and Pain
    • /
    • 제31권3호
    • /
    • pp.255-263
    • /
    • 2006
  • 임상적으로 비정복성 관절원판전위로 진단된 3명의 환자에서 이들은 모두 물리치료, 약물치료만이 행해진 환자로 내원 중에 갑작스런 교합변화 및 전치부 개교합을 나타내었다. 종래에 알려진 개교합의 발생은 류마티즘 관절염이나 양측과두의 심한 퇴행성 변화가 있는 경우에 상당한 과두지지의 상실로 후방지지를 잃게 되어 구치들이 과도하게 접촉하고 전치 개교합이 발생될 수 있는 것은 이미 잘 알려진 사실이나, 과두지지의 상실이 없는 비정복성 관절원판전위만으로 특정 환자에서는 개교합의 발생이 가능하며 이는 구치부 치아의 증출에 의한 전치부 개교합이라 볼 수 없으며, 하악의 후하방 회전의 결과로 볼 수 있다. 이들 3환자들의 전체적인 골격적 특징은(1)구치부 앵글씨 1급 교합관계와 천피개 교합,(2)높은 하악하연각,(3)높은 하악각 등으로 봐서 상하악의 골격적 형태가 II급과 III급에 관계없이 수직적 성장이 강한 안모형태에서 갑작스런 개교합이 발생될 수 있으리라 생각된다. 앞으로 개교합이 발생되는 관절원판전위 환자에서 하악의 후하방 회전의 원인을 밝히고, 이러한 골격적인 특징이 측두하악장애의 원인 인자가 될 수 있는 지 더 많은 연구가 필요하리라 생각된다.

흙의 공학적 성질에 관한 연구 (Study on Engineering Properties of Earth Materials)

  • 김주범;윤충섭
    • 한국농공학회지
    • /
    • 제17권3호
    • /
    • pp.3815-3832
    • /
    • 1975
  • This study was made to investigate various engineering properties of earth materials resulting from their changes in density and moisture content. The results obtained in this study are summarized as follows: 1. The finner the grain size is, the bigger the Optimum Moisture Content(OMC) is, showing a linear relationship between percent passing of NO. 200 Sieve (n) and OMC(Wo) which can be represented by the equation Wo=0.186n+8.3 2. There is a linear relationship of inverse proportion between OMC and Maximum Dry Density (MDD) which can be represented by the equation ${\gamma}$d=2.167-0.026Wo 3. There is an exponential curve relationship between void ratio (es) and MDD whose equation can be expressed ${\gamma}$d=2.67e-0.4550.9), indicating that as MDD increases, void ratio decreases. 4. The coefficent of permeability increases in proportion to decrease of the MDD and this increase trend is more obvious in coarse material than in fine material, and more obvious in cohesionless soil than in cohesive soil. 5. Even in the same density, the coefficient of permeability is smaller in wet than in dry from the Optimum Moisture Content. 6. Showing that unconfined compressive strength increases in proportion to dry density increase, in unsaturated state the compacted in dry has bigger strength value than the compacted in wet. On the other hand, in saturated state, the compacted in dry has a trend to be smaller than the compacted in wet. 7. Even in the same density, unconfined compressive strength increases in proportion to cohesion, however, when in small density and in saturated state, this relationship are rejected. 8. In unsaturated state, cohesion force is bigger in dry than in wet from OMC. In saturated state, on the other hand, it is directly praportional to density. 9. Cohesion force decreases in proportion to compaction rate decrease. And this trend is more evident in coarse matorial than in fine material. 10. Internal friction angle of soil is not influenced evidently on the changes of moisture content and compaction rate in unsaturated state, On the other hand in saturated state it is influenced density. 11. Cohesion force is directly proportional to unconfined compressive strength(qu), indicating that it has approximately 35 percent of qu in unsaturated state and approximately 70 percent of qu in saturated state.

  • PDF

동결건조 공정을 이용한 텅스텐 다공체의 제조 및 특성 (Fabrication and Properties of Porous Tungsten by Freeze-Drying Process)

  • 이영숙;오승탁
    • 한국재료학회지
    • /
    • 제21권9호
    • /
    • pp.520-524
    • /
    • 2011
  • Porous W with controlled pore characteristics was fabricated by a freeze-drying process. $WO_3$ powder and camphene were used as the source materials of W and sublimable vehicles, respectively. Camphene slurries with $WO_3$ contents of 10 and 15 vol% were prepared by milling at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing of a slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$ while the growth direction of the camphene was unidirectionally controlled. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was hydrogen-reduced at $800^{\circ}C$ for 30 min and sintered in a furnace at $900^{\circ}C$ for 1 h under a hydrogen atmosphere. Microstructural observation revealed that all of the sintered samples were composed of only W phase and showed large pores which were aligned parallel to the camphene growth direction. The porosity and pore size increased with increasing camphene content. The difference in the pore characteristics depending on the slurry concentration may be explained by the degree of powder rearrangement in the slurry. The results strongly suggest that a porous metal with the required pore characteristics can be successfully fabricated by a freeze-drying process using metal oxide powders.

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • 김윤학;박순미;권순남;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF