• Title/Summary/Keyword: WO3

Search Result 720, Processing Time 0.029 seconds

A Study of Reduced and Carburized Reactions in Dry-milled $WO_3+Co_3O_4+C$ Mixed Powders with Different Carbon Content

  • Im, Hoo-Soon;Lee, Wan-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.648-649
    • /
    • 2006
  • The dry-milling technique was used for mixing and crushing oxides and graphite powders. The ratio of ball-to-powder was 30:1 and argon gas was filled in jar. The excess carbon was $10{\sim}20wt%$ of the stoichiometric amount. The dry-milling was carried for 20 hours. The mixed powders were reduced and carburized at $900{\sim}980^{\circ}C$ for 3 hours flowing Ar gas in tube furnace. The dry-milled powders showed the wide diffraction patterns of X-ray. The reactions of reduction and carburization were completed in 3 hours at $980^{\circ}C$. After the reactions, the mean size of WC particles was about 200 nm. The content of free carbon in WC/Co mixed powders was less as the reaction temperature increased.

  • PDF

Formation of N2O in NH3-SCR DeNOxing Reaction with V2O5/TiO2-Based Catalysts for Fossil Fuels-Fired Power Stations (화력발전소용 V2O5/TiO2계 촉매상에서 NH3-SCR 탈질반응으로부터의 N2O 생성)

  • Kim, Moon Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.163-170
    • /
    • 2013
  • Selective catalytic reduction of $NO_x$ by $NH_3$ ($NH_3$-SCR) over $V_2O_5/TiO_2$-based catalysts is recently reported to be an anthropogenic emitter of $N_2O$ that is a global warming gas with a global warming potential of 310. Therefore, this review will get a touch on significance of some parameters regarding $N_2O$ formation in the $deNO_xing$ reaction for fossil fuels-fired power plants applications. The $N_2O$ production in $NH_3$-SCR reaction with such catalysts occurs via side reactions between $NO_x$ and $NH_3$ in addition to $NH_3$ oxidation, and the extent of these undesired reactions depends strongly on the loadings of $V_2O_5$ as a primary active component and the promoter as a secondary one ($WO_3$ and $MoO_3$) in the SCR catalysts, the feed and operating variables such as reaction temperature, $NO_2/NO_x$ ratio, oxygen concentration, gas hourly space velocity, water content and thermal excursion, and the physical and chemical histories of the catalysts on site. Although all these parameters are associated with the $N_2O$ formation in $deNO_xing$ reaction, details of some of them have been discussed and a better way of suppressing the $N_2O$ production in commercial SCR plants has been proposed.

Quantitative Analysis of Patents Concerning Cathode Active Materials for Lithium-Ion Secondary Batteries Based on Layer Structure (층상구조기반의 리튬이차전지용 양극 활물질에 관한 특허정량분석)

  • Kim, Byung-Nam;Lim, Yong-Hwan;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.287-293
    • /
    • 2015
  • This paper discusses quantitative analyses of patents published for cathode active materials for lithium secondary batteries based on layer structure. Numbers of the patents analyzed were 356, 1628, 2915, 439, and 611 for Korea, USA, Japan, Europe, and PCT (WO), respectively. Trends of improved technologies and alternative technologies concerning lithium cobalt, from 1991 to 2012 were examined and the patent shares distribution of each principal countries about lithium secondary battery technologies were also scrutinized. The number of patents for the mixed structure technology and next-generation lithium secondary battery technology increased numerously in 2000. Particularly in 2005, lots of patents were also published and SANYO (34.5%), SONY (17.5%), LG (7%), and SAMSUNG (5.5%) possessed leading patent applicants. Finally, the research focus on cathode active materials for lithium secondary batteries was confirmed by bubble chart distributions for component-by-step process.

Qualitative Analysis of Patents Concerning Cathode Active Materials for Lithium-Ion Secondary Batteries Based on Layer Structure (층상구조기반의 리튬이차전지용 양극 활물질에 관한 특허정성분석)

  • Kim, Byung-Nam;Lim, Yong-Hwan;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.294-305
    • /
    • 2015
  • We have quantitatively analyzed 1,294 effective patents on "Quantitative Analysis of Patents Concerning Cathode Active Materials for Lithium-Ion Secondary Batteries Based on Layer Structure" from Korea, USA, Japan, Europe and PCT (WO). The importance of technological and patent values of the aforesaid patents were evaluated by the factors shown in Table 1, and 104 major and 20 core patents were selected in compliance with the evaluation from the patents. The technological flow chart over time regarding the selected major and core patents was prepared, and the applying time and development process of patents, as well as the position of core patents were established on the time scale investigated. Finally, the differentiation plans and patent avoidance strategies for the next technology development, in comparison with the technologies of patents already applied and registered, were suggested.

Development of an Sampling Tube for Organic Solvents and Study on the Adsorption Capacity of the Activated Charcoal (유기용제용 시료채취기 개발을 위한 활성탄 성능검정에 관한 연구)

  • Bai, Ya Soung;Park, Doo Young;Lim, Dai Soung;Park, Byung Moo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.8-18
    • /
    • 2005
  • Adsorption capacity for the charcoal were tasted in this study to verify the performance of them for the use of the sampling media in industrial hygiene field. Two set of experiments were conducted. The first experiment was to test performance of the tested charcoal tube that were assembled in the laboratory with the use of the GR grade charcoal. The other tests were investigate the adsorption capacity of the charcoal tested in this study and charcoals embedded in the commercial charcoal tubes. Known air concentration samples for benzene, toluene, and o-xylene were prepared by the dynamic chamber. 1. At low air concentration levels (0.1${\times}$TLV), there was no significant differences between the tested charcoal tubes and the SKC charcoal tubes. This implies that there is no defect with the adsorption capacity of the charcoal. 2. At high concentration with 60 minutes sampling, the breakthrough were found only in the tested charcoal while no breakthrough were shown in the SKC charcoal. 3. From the breakthrough tests for the charcoal, the micropore volume(Wo) were calculated by the curve fitting with the use of Dubinin/Radushkevich(D/R) adsorption isotherm equation. The calculated values were 0.687cc/g for SKC, 0.504cc/g for Sensidyne, and 0.419cc/g for the tested charcoal(Aldrich). 4. Adsorption capacities were obtained from the isotherm curves shown adsorption capacities at several levels of the challenge concentration. All range of the air concentration concerned in industrial hygiene, the SKC charcoal showed approximately two times of adsorption capacity compared to the tested charcoal.

Fabrication and Ammonia Gas Sensing Properties of Chemiresistor Sensor Based on Porous Tungsten Oxide Wire-like Nanostructure

  • Vuong, Nguyen Minh;Kim, Do-Jin;Hieu, Hoang Nhat
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.25.2-25.2
    • /
    • 2011
  • The tungsten oxide wire-like nanostructure is fabricated by deposition and thermal oxidation of tungsten metal on porous single wall carbon nanotubes (SWNTs). The morphology and crystalline quality of materials are investigated by SEM, TEM, XRD and Raman analysis. The results prove that $WO_3$ wire-like nanostructure fabricated on SWNTs show highly porous structures. Exposure of the sensors to NH3 gas in the temperature range of 150~300$^{\circ}C$ resulted in the highest sensitivity at $250^{\circ}C$ with quite rapid response and recovery time. Response time as a function of test concentrations and NH3 gas sensing mechanism is reported and discussed.

  • PDF

SNCR/SCR Combined 시스템을 이용한 DeNOx 연구

  • 최상기;남창모;박상원;최성우
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.26-27
    • /
    • 2001
  • SNCR 기술을 이용한 NOx 저감은 반응온도 850~$1100^{\circ}C$에서 효과적이였으며, 몰비($NH_3$/NOx), $O_2$ 농도에 상당히 영향을 받고 있었다. 최적온도 $950^{\circ}C$, 몰비 1.5에서 약65%의 NOx 제거효율을 얻을 수 있으며, 온도구배가 없고 $O_2$ 농도가 2~4%로 낮아질 경우 더 높은 제거효율이 기대된다. SCR 기술에 의한 NOx 저감을 위해 $V_3$$O_{5}$/-$WO_3$/$TiO_2$ 상용촉매를 사용하였으며, 반응 온도는 200~$500^{\circ}C$ 범위로 확인되었으며, 약 84%의 NOx 제거효율이 몰비 1.5 에서 얻어졌다. $O_2$ 농도가 21%로 높아짐에 따라 상당히 효율이 떨어짐이 밝혀졌다. SNCR/SCR combined 시스템은 몰비=2.0, $T_{SNCR}$/=$850^{\circ}C$, $T_{SCR}$ /=$350^{\circ}C$ 반응조건에서는 약 93%의 NOx 저감효율을 보여주어 SNCR, SCR 단위기술보다 더 효과적이었다.

  • PDF

Study of Plasma Process Induced Damages on Metal Oxides as Buffer Layer for Inverted Top Emission Organic Light Emitting Diodes

  • Kim, Joo-Hyung;Lee, You-Jong;Jang, Jin-Nyoung;Song, Byoung-Chul;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.543-544
    • /
    • 2008
  • In the fabrication of inverted top emission organic light emitting diodes (ITOLEDs), the organic layers are damaged by high-energy plasma sputtering process for transparent top anode. In this study, the plasma process induced damages on metal oxide hole injection layers (HILs) including $WO_3$, $MoO_3$, and $V_2O_5$ as buffer layer are examined. With the result of IV characteristic of hole-only devices, we propose that $MoO_3$ and $V_2O_5$ are stable materials against plasma sputtering process.

  • PDF

Electrical and Optical Properties of Electrochromic Window with Both Lithium and Proton Conducting Polymer Electrolytic Media (리튬 및 프로톤 전도성 고분자전해질을 사용하여 제작한 Electrochromic 창의 전기 및 광학적 특성)

  • 박성용;이철환;김형선;조원일;조병원;윤경석;안춘호;우경근
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.1
    • /
    • pp.46-54
    • /
    • 1995
  • An electrochromic(EC) cell was constructed using $WO_3$ as a electrochromic material and NiO as a counter electrode, deposited onto ITO-coated glass by the implementation of electron beam evaporation. The electrolytic media were both lithium and proton conducting polymers such as poly-acrylonitrile(PAN)-$LiClO_4$, poly-ethylene oxide(PEO)-$LiClO_4$, poly-vinyl butyral(PVB)-LiCl and PVB-H$_3$$PO_4$. Potentiodynamic cycling of the cells using PAN-$LiClO_4$, or PVB-$H_3$$PO_4$ electrolyte yielded a transmission variation of more than 40% at the wavelength of 632.8 nm within less than 10 sec response time at room temperature. These results indicate that these electrolytes, transparent in gel type, are premising for the application in large area electrochromic windows.

  • PDF

A Study on the Optimal Probe Path Generation for Sculptured Surface Inspection Using the Coordinate Measuring Machine (3차원 측정기를 이용한 자유곡면 측정시 최적의 경로 결정에 관한 연구)

  • Cho, Myung-Wo;Yi, Seung-Jong;Kim, Moon-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.121-129
    • /
    • 1995
  • The objective of this research is to develop an effective inspection planning strategy for sculptured surfaces by using 3-dimensional Coordinate Measuring Machine (CMM). First, the CAD/CAM database is generated by using the Bezier surface patch mathod and variable cutter step size approach for design and machining of the workpiece model. Then, optimum measuring point locations are determained based on the mean curvature analysis to obtain more effective inspection results for the given sample numbers. An optimal probe sequence generation method is proposed by implementing the Traveling Salesperson (TSP) algorithm and new guide point selection methods are suggested based on the concepts of the variable distance between the first and second guide points. Finally, simulation study and experimental work show the effectiveness of the proposed strategy.

  • PDF