• Title/Summary/Keyword: WO$_3$ sensor

Search Result 68, Processing Time 0.027 seconds

NO2 Gas Sensing Properties of Nano-Sized In2O3 Doped WO3 Powders Prepared from Polymer Solution Route (폴리머 용액법에 의한 In2O3 첨가 나노 WO3 분말 합성 및 NO2 가스 센서 특성)

  • Kim, Dong Min;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.12-17
    • /
    • 2018
  • $In_2O_3$ doped $WO_3$ powders were prepared by a polymer solution route and their $NO_2$ gas sensing properties were analyzed. The synthesized powders showed nano-sized particles with specific surface areas of $6.01{\sim}21.5m^2/g$ and the particle size and shape changed according to the content of $In_2O_3$. The gas sensors fabricated with the synthesized powders were tested at operating temperatures of $400{\sim}500^{\circ}C$ and 100~500 ppm concentrations of $NO_2$ atmosphere. The particle size and $In_2O_3$ content affected on the initial sensor resistance in an air atmosphere. The highest sensitivity (8.57 at $500^{\circ}C$), which was 1.77 higher than the sensor consisting of the pure $WO_3$ sample, was measured in the 0.5 mol% $In_2O_3$ doping sample. In addition, the response time and recovery time were improved by the addition of $In_2O_3$.

A Study On the Electrical Characteristic of WO3 and NiO-WO3 Thin Films Prepared by Thermal Evaporation (Thermal Evaporation법에 의해 제조된 WO3 박막과 NiO-WO3박막의 전기적 특성에 관한 연구)

  • Na Eun-young;Na Dong-myong;Park Jin-seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.32-36
    • /
    • 2005
  • [ $WO_3$ ] and $NiO-WO_3$ thin films were deposited on a Si (100) substrate by using high vacuum thermal evaporation. The effects of various film thicknesses on the surface morphology $WO_3$ and $NiO-WO_3$ thin films were investigated. X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the deposited films. The results suggest that as $WO_3$ thin films became thick, their grain grew up to a $0.6{\mu}m$. On the other hand, NiO-doping to $WO_3$ thin films inhibited the grain growth five times less than undoped $WO_3$ thin films. This results show that NiO doping inhibited the grain growing of $WO_3$ thin films. Also, the variation of NOx sensitivity $(R_{NOx}/R_{air})$ to the thickness of $WO_3$ and $NiO-WO_3$ thin films were measured according to the thickness change of thin films and the working temperature of sensor in 5ppm NOx gas. As a result, $NiO-WO_3$ thin films showed more excellent properties than $WO_3$ thin films for NOx sensitivity.

$NO_{2}$ Sensing Properties of Oxide Semiconductor Thick Films (산화물 반도체형 후막 가스 센서의 이산화질소 감지 특성)

  • Kim, Seung-Ryeol;Yun, Dong Hyun;Hong, Hyung-Ki;Kwon, Chul-Han;Lee, Kyu-Chung
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.451-457
    • /
    • 1997
  • The thick films of oxide semiconductors such as $WO_{3}$, $SnO_{2}$ and ZnO for the $NO_{2}$ detection of sub-ppm range have been prepared and their characteristics were investigated. It is showed that the optimum operating temperatures of the sensors are $300^{\circ}C$ and $220{\sim}260^{\circ}C$ for $WO_{3}$-based and $SnO_{2}$-based thick films, and ZnO-based thick films, respectively. Since the resistance of ZnO-based thick films are extremely high($>10^{6}{\Omega}$), the signal to noise ratio was comparatively low. In order to determine the selectivity, the films are exposed to the interfering gases such as ozone, ammonia, methane and the mixture of carbon monoxide and propane. $WO_{3}$-ZnO(3 wt.%) and $SnO_{2}-WO_{3}$(3 wt.%) thick film sensors show high sensitivity, good selectivity, excellent reproducibility and the linearity of $NO_{2}$ concentration versus sensor resistance. The preliminary results clearly demonstrated that the sensor can be successfully applied for the detection of $NO_{2}$ in sub-ppm range.

  • PDF

SAW Gas Sensor using WO$_3$Thin Film (WO$_3$박막을 이용한 SAW 가스 센서)

  • 정영우;허두오;이해민;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.187-189
    • /
    • 1995
  • A Surface Acoustic Wave Gas sensor for NO, CO, H$_2$gas detection was designed fabricated, and tested. A delay line device was designed to composite a single mode SAW oscillator which enables to measure a SAW velocity. To reduce the effect of temperature and humidity, dual delay line oscillator circuit was used. And final output was measured by digital frequency counter. NO, CO, H$_2$gas were detected by WO$_3$thin film deposited on the path of the Delay Line.

  • PDF

A Study on Micro Gas Sensor Utilizing WO$_3$ Thin Films Fabricated by Sputtering Method (스퍼터링법으로 제작한 WO$_3$ 박막을 이용한 NO$_2$ 마이크로 가스센서에 관한 연구)

  • 김창교;이영환;노일호;유홍진;유광수;기창진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • A flat type micro gas sensor was fabricated on the p-type silicon wafer with low stress Si$_3$N$_4$, whose thickness is 2 ${\mu}{\textrm}{m}$, using MEMS technology. WO$_3$ thin film as a sensing material for detection of NO$_2$ gas was deposited using a tungsten target by sputtering method, followed by thermal oxidation at several temperatures (40$0^{\circ}C$-$600^{\circ}C$) for one hour. NO$_2$ sensitivities were investigated for the WO$_3$ thin films with different annealing temperatures. The highest sensitivity was obtained for the samples annealed at $600^{\circ}C$ when it was operated at 20$0^{\circ}C$. The results of XRD analysis showed the annealed samples had polycrystalline phase mixed with triclinic and orthorhombic structures. The sample exhibits higher sensitivity when the system has less triclinic structure. The sensitivities, $R_{gas}/R_{air},$ operating at 20$0^{\circ}C$ to 5 ppm NO$_2$ of the sample annealed at $600^{\circ}C$ were approximately 90.

  • PDF

Bio-inspired Cr2O3 and Co3O4 Nanoparticles Loaded Electrospun WO3 Nanofiber Chemical Sensor for Early Diagnosis of Halitosis (고분산성 Cr2O3 및 Co3O4 전이금속 나노입자 촉매가 기능화된 다공성 WO3 나노섬유를 이용한 구취진단용 화학센서)

  • Jang, Ji-Soo;Kim, Sang-Joon;Choi, Seon-Jin;Koo, Won-Tae;Kim, Il-Doo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.223-228
    • /
    • 2016
  • In this work, we prepared porous WO3 nanofibers (NFs) functionalized by bio-inspired catalytic $Cr_2O_3$ and $Co_3O_4$ nanoparticles as highly sensitive and selective $H_2S$ gas sensing layers. Highly porous 3-dimensional (3D) NFs networks decorated by well-dispersed catalyst NPs exhibited superior $H_2S$ gas response ($R_{air}/R_{gas}$ = 46 at 5 ppm) in high humidity environment (95 %RH). In particular, the sensors showed outstanding $H_2S$ selectivity against other interfering analytes (such as acetone, toluene, CO, $H_2$, ethanol). Exhaled breath sensors using $Cr_2O_3$ and $Co_3O_4$ catalysts-loaded $WO_3$ NFs are highly promising for the accurate detection of halitosis.

Gas sensing characteristics of $TiO_{2}/WO_{3}$ thick film for hydrocarbon gas (후막형 $TiO_{2}/WO_{3}$ 소자의 탄화수소계가스에 대한 감도 특성)

  • Chang, Dong-Hyuck;Choi, Dong-Han
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.21-27
    • /
    • 1996
  • Thick film $TiO_{2}/WO_{3}$ butane gas sensors were fabricated by the screen printing method and their gas sensing characteristics were investigated. The sensitivity of $TiO_{2}/WO_{3}$ thick film was higher than that of pure $WO_{3}$ film to butane. The $WO_{3}$ film with 2wt.% $TiO_{2}$ showed the highest sensitivity to butane. And the optimum heat treatment temperature was $650^{\circ}C$. That film showed the highest sensitivity to butane at the operating temperature of $350^{\circ}C$. The sensitivity of the film to 20000ppm butane in air was 80% at the operating temperature of $350^{\circ}C$.

  • PDF

A Study on Micro Gas Sensor Utilizing $WO_3$Thin Film Fabricated by Sputtering Method (스파터링법에 의해 제작된 $WO_3$박막을 이용한 마이크로 가스센서에 관한 연구)

  • 이영환;최석민;노일호;이주헌;이재홍;김창교;박효덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.471-474
    • /
    • 2000
  • A flat type microgas sensor was fabricated on the p-type silicon wafer with low stress S $i_3$ $N_4$, whose thickness is 2${\mu}{\textrm}{m}$ using MEMS technology and its characteristics were investigated. W $O_3$thin film as a sensing material for detection of N $O_2$gas was deposited using a tungsten target by sputtering method, followed by thermal oxidation at several temperatures (40$0^{\circ}C$~$600^{\circ}C$) for one hour. N $O_2$gas sensitivities were investigated for the W $O_3$thin films with different annealing temperatures. The highest sensitivity when operating at 20$0^{\circ}C$ was obtained for the samples annealed at $600^{\circ}C$. As the results of XRD analysis, the annealed samples had polycrystalline phase mixed with triclinic and orthorhombic structures. The sample exhibit higher sensitivity when the system has less triclinic structure. The sensitivities, $R_{gas}$ $R_{air}$ operating at 20$0^{\circ}C$ to 5 ppm N $O_2$of the sample annealed at $600^{\circ}C$ were approximately 90. 90.

  • PDF

Structural and Electrical Properties of WOx Thin Films Deposited by Direct Current Reactive Sputtering for NOx Gas Sensor

  • Yoon, Young-Soo;Kim, Tae-Song;Park, Won-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.97-101
    • /
    • 2004
  • W $O_{x}$-based semiconductor type thin film gas sensor was fabricated for the detection of N $O_{x}$ by reactive d.c. sputtering method. The relative oxidation state of the deposited W $O_{x}$ films was approximately compared by the calculation of the difference of the binding energy between Ols to W4 $f_{7}$2/ core level XPS spectra in the standard W $O_3$ powder of known composition. As the annealing temperature increased from 500 to 80$0^{\circ}C$, relative oxygen contents and grain size of the sputtered films were gradually increased. As the results of sensitivity ( $R_{gas}$/ $R_{air}$) measurements for the 5 ppm N $O_2$ gas, the sensitivity was 110 and the sensor showed recovery time as fast as 200 s. The other sensor properties were examined in terms of surface microstructure, annealing temperature, and relative oxygen contents. These results indicated that the W $O_3$ thin film with well controlled structure is a good candidate for monitoring and controlling of automobile exhaust.haust.t.t.t.