• Title/Summary/Keyword: WMN(Wireless Mesh Network)

Search Result 89, Processing Time 0.03 seconds

Dual Mode-AODV for the Hybrid Wireless Mesh Network (하이브리드 무선 메시 네트워크를 위한 듀얼모드-AODV)

  • Kim, Hocheal
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • With the Development of Wireless Network Technology and Wireless Link Technology, Wireless Mesh Network (WMN) is Attracting Attention as a Key Technology to Construct the Wireless Transit Network. The WMN has been Studied for a Long Time in Various Fields, however there are still many Problems that have not been solved yet. One of them is the Routing Problem to find an Optimal path in a Multi-hop Network Composed of Wireless Links. In the Hybrid-WMN, which is one of the Three Types of WMN, Optimal Path Selection Requires Research on Path Search Protocols that Effectively use the Infrastructure Mesh as a Transit Network, Together with Research for a Routing Metric with Excellent Performance. Therefore, this Paper Proposes a Dual Mode-AODV(Ad hoc On-demand Distance Vector) for Hybrid-WMN. Simulation result shows that the Path Selection Delay was Reduced by 52% than AODV when the Proposed Dual Mode-AODV was applied.

Empirical Evaluation of Wireless Mesh Network Equipments (무선 메쉬 네트워크 장비의 실험적인 성능 검증)

  • Lee, Ok-Hwan;Kim, Seong-Kwan;Lee, Hee-Young;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9B
    • /
    • pp.760-766
    • /
    • 2008
  • As a backbone network, wireless mesh network (WMN) aims to provide reliable high throughput network connectivity to wireless users. Recent research has focused on routing and channel allocation to increase the capacity of wireless mesh backbones. Wireless mesh networking is an attractive solution for home, community, and enterprise networks as it is a self-configuring, instantly deployable, and lowcost networking system. In this paper, we empirically evaluate and analyze charateristic of WMN to establish WMN testbed by measurement. We use laptops and net4826 Soekris board widely used. Soekris boards are equipped with one network interface card (NIC) or above in our measurements. We also use paket generator, routing demon tools and so on. Throughout this measurements, we show limitation of Soekris board and software we use, and suggest guideline to establish WMN.

Establishment and Performance Test of Wireless Communication Network for Train Control using Wireless Mesh Network(WMN) (무선 메쉬 네트워크를 이용한 열차무선통신망 구축 및 성능시험)

  • Cho, Dong-Rae;Yoo, Sung-Ho;Kim, Ja-Young;Park, Chae-Jung;Lee, Sung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2787-2794
    • /
    • 2011
  • A mesh node, a component of a mesh network, is connected with the network by dynamic routing using routing protocol and collects the information of adjacent or connected mesh nodes for its self-management and settings. Also, it relays packets between the mesh nodes and provides AP(Access Point) with its corresponding functions based on IEEE 802.11 a/b/g for clients' access to the network. In this paper, the study focused on the design and performance tests of Wireless Mesh Network(WMN) which is applied to the wireless communication network for the CBTC(Communications Based Train Control) system. The WMN was established on a K-AGT test-line (Kyeongsan city, Gyeongsangbuk-do), and to verify the applicability, its operation and performances are checked by measuring the data throughput, delay latency, quality measurements such as transmission loss, radio interference and path recovery and setup between the on-board and wayside.

  • PDF

CAMR: Congestion-Aware Multi-Path Routing Protocol for Wireless Mesh Networks

  • Jang, Seowoo;Kang, Seok-Gu;Yoon, Sung-Guk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.411-419
    • /
    • 2017
  • The Wireless Mesh Network (WMN) is a multi-hop wireless network consisting of mesh routers and clients, where the mesh routers have minimal mobility and form the backbone. The WMN is primarily designed to access outer network to mesh clients through backhaul gateways. As traffic converges on the gateways, traffic hotspots are likely to form in the neighborhood of the gateways. In this paper, we propose Congestion Aware Multi-path Routing (CAMR) protocol to tackle this problem. Upon congestion, CAMR divides the clients under a mesh STA into two groups and returns a different path for each group. The CAMR protocol triggers multi-path routing in such a manner that the packet reordering problem is avoided. Through simulations, we show that CAMR improves the performance of the WMN in terms of throughput, delay and packet drop ratio.

A Channel Assignment Technique for OFDMA-based Wireless Mesh Network with Different Time Delays (서로 다른 지연 시간을 갖는 OFDMA 기반 Wireless Mesh Network에서의 채널 할당 기법)

  • Yoo, Hyun-Il;Park, Chang-Hwan;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.568-576
    • /
    • 2011
  • In this paper, a channel assignment technique to mitigate interferences due to ISI(Inter Symbol Interference) and ICI(Inter Carrier Interference) caused by TDoA(Time Difference of Arrival) among distributed MRs(Mesh Routers) in OFDMA(Orthogonal Frequency Division Multiple Access)-based WMN(Wireless Mesh Network) is proposed. The SINR(Signal to Interference and Noise Ratio) associated with the channel assignment for each MR is defined to minimize the effect of ISI and ICI due to TDoA in WMN, which is then used to propose an channel assignment technique considering fairness constraint. It is verified by computer simulation that the proposed channel assignment technique can improve the performance of BER(Bit Error Rate) in WMNs with compared to the conventional technique.

A Design of Wireless Mesh Networks based middleware (Wireless Mesh Networks 기반 미들웨어 설계)

  • Im, Hyeok-Jin;Kang, Hyun-Joong;Ju, Hui-Dong;Lee, Myeong-Hun;Yoe, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.453-456
    • /
    • 2007
  • In this paper, we describes a design of Wireless Mesh Network based middleware that applied into USN(Ubiquitous Sensor Networks). WMN based middleware is a technique which links data between widely distributed sensor devices and WMN for context-awareness. The use of WMN base middleware in this paper makes possible communication on insufficiently network constructed area by use of WMN. WMN based middleware also anaylze events comprehensively that originated from specific sensor device. Based on the result from analyzed data with predetermined value WMN based middleware will given an order to designated actuator devices. Middleware operate each function of sensor network management and application service separately.

  • PDF

Clustering Formation and Topology Control in Multi-Radio Multi-Channel Wireless Mesh Networks

  • Que, Ma. Victoria;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.488-501
    • /
    • 2008
  • Convergence of various wireless systems can be cost effectively achieved through enhancement of existing technology. The emergence of Wireless Mesh Network (WMN) entails the interoperability and interconnection of various wireless technologies in one single system. Furthermore, WMN can be implemented with multi-radio and multi-channel enhancement. A multi-radio, multi-channel wireless mesh network could greatly improve certain networking performance metrics. In this research, two approaches namely, clustering and topology control mechanisms are integrated with multi-radio multi-channel wireless mesh network. A Clustering and Topology Control Algorithm (CTCA)is presented that would prolong network lifetime of the client nodes and maintain connectivity of the routers.

A Study on Multicast Routing Metric for Wireless Mesh Network (WMN의 멀티캐스트 라우팅 메트릭에 대한 연구)

  • Gao, Hui;Lee, Hyung-Ok;Nam, Ji-Seung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.101-103
    • /
    • 2012
  • This paper gives an introduction to multicast in wireless mesh networks. The factors to be addressed when designing a multicast protocol for wireless mesh network are presented. Emphases are paid on selection of multicast routing metrics in wireless mesh networks. Also details of adapting these metrics to gain high-throughput multicast in wireless mesh network are described in the paper.

  • PDF

Channel Assignment, Link Scheduling, Routing, and Rate Control for Multi-Channel Wireless Mesh Networks with Directional Antennas

  • Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.884-891
    • /
    • 2016
  • The wireless mesh network (WMN) has attracted significant interests as a broadband wireless network to provide ubiquitous wireless access for broadband services. Especially with incorporating multiple orthogonal channels and multiple directional antennas into the WMN, each node can communicate with its neighbor nodes simultaneously without interference between them. However, as we allow more freedom, we need a more sophisticated algorithm to fully utilize it and developing such an algorithm is not easy in general. In this paper, we study a joint channel assignment, link scheduling, routing, and rate control problem for the WMN with multiple orthogonal channels and multiple directional antennas. This problem is inherently hard to solve, since the problem is formulated as a mixed integer nonlinear problem (MINLP). However, despite of its inherent difficulty, we develop an algorithm to solve the problem by using the generalized Benders decomposition approach [2]. The simulation results show the proposed algorithm provides the optimal solution to maximize the network utility, which is defined as the sum of utilities of all sessions.

A Minimum Interference Channel Assignment Algorithm for Performance Improvement of Large-Scale Wireless Mesh Networks (대규모 무선 메쉬 네트워크의 성능 향상을 위한 최소 간섭 채널 할당 알고리즘)

  • Ryu, Min-Woo;Cha, Si-Ho;Cho, Kuk-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.964-972
    • /
    • 2009
  • Wireless mesh network (WMN) is emerging a future core technology to resolve many problems derived from exist wireless networks by employing multi-interface and multi-channel. Ability to utilize multiple channels in WMNs substantially increases the effective bandwidth available to wireless network nodes. However, minimum interference channel assignment algorithms are required to use the effective bandwidth in multi-channel environments. This paper proposes a cluster-based minimum interference channel assignment (MI-CA) algorithm to improve the performance of WMN. The MI-CA algorithm is consists of Inter-Cluster and Intra-Cluster Intrchannel assignment between clusters and in the internal clusters, respectively. The Inter-Cluster channel assignment assigns a barebone channel to cluster heads and border nodes based on minimum spanning tree (MST) and the Intra-Cluster channel assignment minimizes channel interference by reassigning ortasgonal channels between cluster mespann. Our simheation results show that MI-CA can improve the performance of WMNs by minimizing channel interference.