• 제목/요약/키워드: WMIL

검색결과 1건 처리시간 0.018초

파티클 필터를 장착한 가중된 다중 인스턴스학습을 이용한 전방차량 추적 (Forward Vehicle Tracking Based on Weighted Multiple Instance Learning Equipped with Particle Filter)

  • 박근호;이준환
    • 한국지능시스템학회논문지
    • /
    • 제25권4호
    • /
    • pp.377-385
    • /
    • 2015
  • 본 논문에서는 파티클 필터를 장착하고 WMIL(Weighted Multiple Instance Learning)을 이용한 전방차량 추적 알고리즘을 제안하였다. 제안된 알고리즘에서 영상표현은 Haar-like 특징들을 사용하고 차량인식 결과는 추적하고자 하는 전방차량의 위치를 알아내는데 사용된다. 제안된 방식에서 WMIL과 파티클 필터를 결합하기 위해 기존의 외관모델을 이용한 추적에서 탐색영역에서 영상조각의 추적객체 신뢰도 맵을 계산하는 대신에 파티클 필터의 전파, 관측, 추정, 선택 그리고 분류기 훈련 등의 단계를 매 프래임 마다 순차적으로 수행하여 객체의 새로운 위치를 갱신하였다. 제안된 전방차량 추적방식은 실험을 통해 Ada-boost, MIL(Multiple Instance Learning)이나 WMIL 방법을 이용하는 추적에 비해 파티클 필터로 인해 계산량 증가는 불가피하나 추적의 질적인 정확도는 국도, 고속도로, 터널 및 시내도로 등의 실험 동영상에서 추적대상의 위치오차가 평균 4.5화소 정도로 기존의 추적방법들에 비해 크게 개선되는 것을 확인하였다.