• Title/Summary/Keyword: WIG

Search Result 116, Processing Time 0.027 seconds

An iterative boundary element method for a wing-in-ground effect

  • Kinaci, Omer Kemal
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.282-296
    • /
    • 2014
  • In this paper, an iterative boundary element method (IBEM) was proposed to solve for a wing-in-ground (WIG) effect. IBEM is a fast and accurate method used in many different fields of engineering and in this work; it is applied to a fluid flow problem assessing a wing in ground proximity. The theory and the developed code are validated first with other methods and the obtained results with the proposed method are found to be encouraging. Then, time consumptions of the direct and iterative methods were contrasted to evaluate the efficiency of IBEM. It is found out that IBEM dominates direct BEM in terms of time consumption in all trials. The iterative method seems very useful for quick assessment of a wing in ground proximity condition. After all, a NACA6409 wing section in ground vicinity is solved with IBEM to evaluate the WIG effect.

A Numerical Analysis of the Thickness-Induced Effect on the Aerodynamic Characteristics of Wings Moving Near Ground

  • Han, Cheolheui;Cho, Jinsoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 2000
  • A numerical method to simulate Wing-In-Ground(WIG) effects for the wings moving near ground is developed. The aerodynamic analysis scheme for the wings is based on a compressible non-planar lifting surface panel method and the WIG effect is included by images. The thickness-induced effect is implemented into the lifting surface panel method by using the teardrop theory. The numerical simulation is done for the rectangular wings by varying the ground proximity. The present method is validated by comparing the calculated aerodynamic coefficients with other numerical results and measured data, showing good agreements.

  • PDF

Numerical study on aerodynamics of banked wing in ground effect

  • Jia, Qing;Yang, Wei;Yang, Zhigang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.209-217
    • /
    • 2016
  • Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

Investigation on Forced Vibration Behavior of Composite Main Wing Structure Excited by Engine and Propeller (엔진 및 프로펠러 가진에 의한 위그선 복합재 날개 진동 해석)

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.217-221
    • /
    • 2007
  • In this study, forced vibrations analysis was performed for main wing of small scale WIG vehicle which is equipped two-stroke pusher type propeller engine, in terms of structural. for the frequency response analysis, excitations were assumed by H-mode(Horizontal mode), X-mode(Twisted mode) which is main vibration mode of engine, and for the transient response analysis, excitations were assumed by L-mode(Longitudinal mode) with propeller thrust which is occurred when it revolution.

  • PDF

A Study on Retro Fashion in Hat Design (현대패션의 모자 디자인에 나타난 레트로 경향)

  • Kim, Eun-Sil;Bae, Soo-Jeong
    • The Research Journal of the Costume Culture
    • /
    • v.14 no.6
    • /
    • pp.877-886
    • /
    • 2006
  • The Purpose of this study were to study Retro-hat design. To do these purposees, the focus of theoretical approach was literature research, and hat design was attempted on the basis of the research. The focus of theoretical background was on previous research and fashion-related literature. Photo materials to analyze retro-hat design is Haute-Couture collection in paris from the 1990's to 2004 and some designer's collections. Then Retro hat design is 85 in 1,381 hat photos. The results obtained through this process were as follows. In the hats of Retro, the past style such as an Egyptian wig, a snake-shaped hat in Crete, a Medieval knight hat, Liripipe, Tricorn hat, or Bicorn hat was reinterpreted and expressed. Since 2003, Retro characteristics has became strong and frequent. By designing a hat on the basis of the direction of hat design, this study intended to find out the development direction of hat design.

  • PDF

Slotted flap을 부착한 WIG선에서의 수치해석 및 진동 저감을 위한 플랩 형상 최적설계

  • Baek, Seung-Chan;Yang, Ji-Hye
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.541-547
    • /
    • 2016
  • 본 연구에서는 Slotted flap을 장착한 WIG선(Wing In Ground effect ship)에서 발생하는 진동을 최소화하기 위해 WIG선의 공력특성을 수치적으로 분석하고 그에 따라 플랩 형상에 대하여 최적화를 진행하였다. 주 익형에 대한 형상은 NACA 4412로 고정한 상태에서 플랩의 각도와 x, y좌표를 설계변수로 설정하였으며, 그에 따라 설정한 평균 $C_L$값을 유지하면서 진동의 진폭 크기가 작아지도록 제한 조건 및 목적 함수를 설정하였다. 최적화된 익형에서 플랩과 주 익형 사이에서 분출되는 유체는 코안다 효과의 영향을 받아 플랩 윗부분을 타고 흐른다. 이로 인해 진동에 결정적인 영향을 미치는 박리영역이 억제되었으며, 진동이 최소화 되었다. 결론적으로 플랩의 최적화를 통하여 기본 설계 익형에서 89%의 진동이 저감되는 것과 동시에 Lift/Drag 96.2로 기본 설계 익형에 비해 4.1배 향상되었다.

  • PDF

Structural Design on Joint Component of Composite Wing of WIG Craft

  • Lee, Younggyu;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.1-3
    • /
    • 2021
  • This study proposed a specific preliminary structural design procedure of the main wing for a small scale WIG vehicle to meet the target weight of the system requirement. The high stiffness and strength Carbon-Epoxy material was used for lightness, and the foam sandwich type structure at the upper skin and the spar webs was adopted for improvement of structural stability. After structural design, wing joint part was designed. Through investigation on structural design result, design modification was performed. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed.

Aerodynamic Design Optimization of Airfoils for WIG Craft Using Response Surface Method (반응표면법을 이용한 지면효과익기 익형의 공력 설계최적화)

  • Kim, Yang-Joon;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.18-27
    • /
    • 2005
  • Airfoils with improved longitudinal static stability were designed for a WIG craft through aerodynamic design optimization. The response surface method is coupled with NURBS-based shape functions and Navier-Stokes flow analysis. The procedure runs in the network-distributed design framework of commercial-code based automated design capability to enhance computational efficiency and robustness.Lift maximization design maintaining similar static margin to a DHMTU airfoil successfully produced a new airfoil shape characterized by pronounced front-loading and the well-known reflexed aft-camber line. Another airfoil design of lower variation in pitching moment during take-off showed weakened front-loaded characteristics and hence decreased lift slightly. Investigations using the present design methodology on an existing optimization result based on potential flow analysis and NACA-type geometry generation demonstrated significance of carrying various geometry generations and more realistic flow analysis with optimization.

A Study on Structural Design and Analysis for Composite Main Wing and Horizontal Tail of A Small Scale WIG Vehicle (경량화 복합재 위그선의 주익 및 수평 미익 구조 설계 및 해석에 관한 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Kim, Ju-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.149-156
    • /
    • 2007
  • The present study provides structural design and analysis of main wing and horizontal tail of a small scale WIG(Wing in Ground Effect) vehicle which has been developed as a part of the high speed maritime transportation system for the future of Korea. Weight saving as well as structural stability could be achieved by skin-spar with foam sandwich design and with wide application of carbon/epoxy composite material. A commercial FEM code, NASTRAN, was utilized to confirm the structural safety and stability through sequential design modifications to meet the final design goal. In addition, each wing and the fuselage were fastened together by eight insert bolts with high strength to accomodate easy assembling and disassembling as well as to guarantee a service life longer than 20 years.