• 제목/요약/키워드: WETLAND ENVIRONMENT CHANGE

검색결과 90건 처리시간 0.031초

습지의 수환경과 영양물질에 미치는 침수식물의 영향 (Effects of Submerged Plants on Water Environment and Nutrient Reduction in a Wetland)

  • 이용민;이석모;성기준
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.19-27
    • /
    • 2010
  • Submerged plants whose most of vegetative mass are below the water surface can have great effects on wetland biogeochemistry and water purification through their photosynthesis and nutrient uptake processes. In this study, change of dissolved oxygen concentration and pH as well as nutrient removal capacity of the submerged plant dominant wetland were investigated using wetland mesocosm experiments. Obvious periodic DO and pH fluctuation was observed due to photosynthetic activities of the submerged plants. It implies that the submerged plants can provide periodic or sequential changes of oxic and anoxic conditions that affect nitrification and denitrification processes and contribute permanent nitrogen removal in the wetland system. The pH changes in the wetland mesocosm suggested that submerged plant could also play an important role as a temporary $CO_2$ storage. Higher nutrient removal efficiency was observed in the submerged plant dominant wetland mesocosm. The removal efficiencies under experimental conditions were 38.89, 84.70, 91.21, 70.76, 75.30% of TN, DIN, $NH_4-N$, TP, $PO_4-P$ in the wetland mesocosm, while those were 26.11, 57.34, 63.87, 28.19, 55.15% in the control treatment, respectively.

Beijing's Wetland Environment Research Based On RS Technology

  • Gong, Hui-Li;Zhao, Wen-Ji;Zhang, Zhi-Feng
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1304-1306
    • /
    • 2003
  • The absolute area of wetland accounts for 0.3% of the whole Beijing. We have studied the current environmental situations of Beijing's wetland and the changes in the key wetland supported by Remote Sensing(RS) technology. The result shows that the areas of wetland are reducing year by year and the quality of ecological environment is dropping year by year. At last, we analyze the factors that influence the change of wetland and propose some constructive suggestions according to current problems existing in Beijing's wetland.

  • PDF

오염하천 수질개선을 위한 Hybrid형 인공습지의 적용 (Application of Hybrid Constructed Wetland System for Stream Water Quality Improvement)

  • 김승준;최용수;배우근
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.209-214
    • /
    • 2006
  • The purpose of this study is to improve the stream water quality by the experimental hybrid constructed wetland system. It consisted of the water layer, sand bed planted reeds, irises and roses, gravel bed, yellow-soil media bed and a flow shifter (FS) which can reverse top and bottom flow in the middle of the wetland. The organic compounds and nitrogen removal efficiencies varied with the seasons, namely temperature change. In summer, the mean efficiencies of COD and TN in the outflow from this wetland system were 63.4 and 48.0% and shown the highest, respectively, whereas, the suspended solids and phosphorus removal efficiencies seemed to be less affected by temperature. As a result of inspecting the decreasing trend of pollutants, nitrification-denitrification in the wetland was the major removal mechanism for nitrogen, the nitrogen reduction was especially enhanced by the application of a FS in the wetland, and phosphorus reduction was mainly occurred as a consequence of adsorption of the yellow-soil media.

습지지표종으로서 딱정벌레류를 이용한 부산, 경남 주요 습지의 특성 및 변화 관찰 (Application of the Carabid Beetles as Ecological Indicator Species for Wetland Characterization and Monitoring in Busan and Gyeongsangnam-do)

  • 도윤호;문태영;주기재
    • 한국환경생태학회지
    • /
    • 제21권1호
    • /
    • pp.22-29
    • /
    • 2007
  • 습지의 서식지 특성 및 환경 지표종을 찾기 위해 부산과 경남에 위치한 습지 유형이 다른 하천습지, 산지습지, 하구습지에서 딱정벌레류를 조사하였다. 조사결과 딱정벌레과, 먼지벌레과, 폭탄먼지벌레과에 속한 22속 28종이 채집되었고, 종 다양성은 하천습지(우포늪, 화포늪), 산지늪(재약산늪), 하구습지(낙동강하구) 순으로 나타났다. 딱정벌레류의 종조성은 각 습지에서 독립적으로 나타났는데(${\chi}^2=1716.8$, P<0.01), 하천습지와 산지늪이 가장 다른 종조성을 보였다. 지표종 분석을 통해 각 유형의 습지를 대표하는 $2{\sim}6$종의 딱정벌레류를 지표종으로 선출하였는데, 지표종들은 토성과 토양습도, 인위적 환경변화에 대해 민감하게 반응하여 습지환경변화를 모니터링할 수 있는 것으로 보인다. 추후 생활사나 먹이특성 등딱정벌레류의 각종별로 자세한생태적 특성이 연구되면 지표종으로 딱정벌레류를 일반화하여 여러 서식지에서 활용할 수 있을 것으로 보인다.

Temporal and Spatial Change in Microbial Diversity in New-developed Wetland Soil Covered by Tamarix chinesis Community in Chinese Yellow River Delta

  • Chen Weifeng;Ann Seoung-Won;Kim Hong-Nam;Shi Yanxi;Mi Qinghua
    • 한국환경과학회지
    • /
    • 제14권4호
    • /
    • pp.367-371
    • /
    • 2005
  • Soil samples were collected from new-developed wetland soil ecosystem of Tamarix chinesis plantation in Chinese Yellow River Delta in different months of 2003. Soil characteristics, temporal change and spatial distribution of microbial community composition and their relationship with nitrogen turnover and circling were investigated in order to analyze and characterize the role of microbial diversity and functioning in the specific soil ecosystem. The result showed that the total population of microbial community in the studied soil was considerably low, compared with common natural ecosystem. The amount of microorganism followed as the order: bacteria> actinomycetes>fungi. Amount of actinomycetes were higher by far than that of fungi. Microbial population remarkably varied in different months. Microbial population of three species in top horizon was corrected to that in deep horizon. Obvious rhizosphere effect was observed and microbial population was significantly higher in rhizosphere than other soils due to vegetation growth, root exudation, and cumulative dead fine roots. Our results demonstrate that microbial diversity is low, while is dominated by specific community in the wetland ecosystem of Tamarix chinesi.

E-GIS 기반의 습지분포 및 규모예측 (A Prediction and Distribution of Wetland Based on an E-GIS)

  • 장용구;김상석
    • 대한토목학회논문집
    • /
    • 제26권6D호
    • /
    • pp.1011-1017
    • /
    • 2006
  • 습지 생태계는 환경의 변화에 민감하여 인위적 간섭에 매우 취약하다. 습지는 육상과 수상생태계의 전이지대이며 인간생활에 매우 중요하다. 따라서 습지의 보전과 관리대책 마련이 필수적이다. 습지 분포지역의 명확한 위치정보, 속성자료를 포함하는 수치지도와 지리정보시스템(GIS)을 이용한 Environment-GIS(E-GIS)의 개선이 필요하다. 본 연구에서는 산지습원에 대한 통합 DB로서 습지관리의 기초자료를 구축하는 방법의 표준안을 제시하였다. 기준점 측량방식을 이용하여 수치지도를 이용한 정확한 위치를 규정하였고 습지분포 수치지도 영역을 표현하였다. 이로써 지리정보를 이용한 GIS DB로 전환하여 도형, 속성정보를 수치화 하였다. 본 연구에서 구축된 습지정보를 기반으로 연구범위 내 환경부 지정 대표 보존습지의 구성인자인 지형, 지질, 동 식물상 분포를 분석하여 발견되지 않은 습지 분포지역을 예측 할 수 있는 활용방안을 제시하였다.

Changes in vegetation and flora of abandoned paddy terraces in responses to drawdown

  • Hong, Mun Gi;Nam, Bo Eun;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • 제43권2호
    • /
    • pp.219-225
    • /
    • 2019
  • In order to assess the impacts of drawdown for land-use change on a Sphagnum-marsh, we compared the vegetation and flora of the wetland before and after the drawdown with focusing on the population of Sphagnum palustre L. Remarkable changes in the coverage of S. palustre and the major vegetational components of the wetland were observed. The coverage of S. palustre markedly decreased by about 75% (from approx. 247 ㎥ in 2011 to approx. 62 ㎥ in 2015) after the drawdown. Tree species such as Salix spp. extended (from about 70% to about 83% in the total coverage of the wetland), whereas herbaceous species shrunk after the drawdown. Upland-inhabiting species such as obligate plants for uplands (OBU) increased, whereas wetland-inhabiting species such as facultative plants for wetlands (FACW) and OBW decreased in terms of vegetational coverage. The total number of plant species decreased from 70 species to 62 species after the drawdown, including the disappearance of some wetland-inhabiting species from the wetland. We suggest that the attention for further studies on the abandoned paddy terraces (APTs) and effort for the management and conservation of APTs and APT-inhabiting species that are vulnerable to human-induced disturbances have to be paid more.

낙동강 수계 자연습지의 계절별 수질변화특성 분석 (Analysis of Seasonal Water Quality Variation of a Natural Wetland in the Nakdong River Basin)

  • 김영윤;이광섭;이석모;강대석;성기준
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.713-719
    • /
    • 2009
  • A natural wetland in the Nakdong River basin which effectively removes non-point source pollutants was investigated for 2 years to understand wetland topography, vegetation types, and water quality characteristics. The water depth of the natural wetland was in the range of 0.5~1.9 m which is suitable for the growth of non-emergent hydrophytes. The wetland has a high length to width ratio (3.3:1) and a relatively large wetland to watershed area ratio (0.057). A broad-crested weir at the outlet increases the retention time of the wetland whose hydrology is mainly dependent on storm events. The concentrations of dissolved oxygen in the growing season and the winter season showed anoxic and oxic conditions, respectively. Diurnal variations of DO and pH in the growing season were also observed due to weather change and submerged plants. COD and TP concentrations were low in the winter season due to low inflow rate and increased retention time. Increased TP concentrations in the spring season were caused by degradation of dead wetland plants. Nitrogen in the wetland was mostly in organic nitrogen form (>75%). During the growing season, ammonium concentration was high but nitrate nitrogen concentration was low, possibly due to anoxic and low pH conditions which are adverse conditions for ammonificaiton and nitrification. The results of this study can be used as preliminary data for design, operation, monitoring and management of a constructed wetland which is designed to treat diffuse pollutants in the Nakdong river watershed.

항공사진 및 퇴적물 분석을 통한 순천 동천하구의 지표경관 변화 및 퇴적환경 연구 (A Study on Surface Landscape Change and Sedimentary Environment of the Dongcheon Estuary through Aerial Photographs and Sediment Analysis)

  • 이예슬;임정철;장동호
    • 한국지형학회지
    • /
    • 제28권1호
    • /
    • pp.35-50
    • /
    • 2021
  • In this study, we analyzed the changes in the topographical landscape and the sedimentary environment to evaluate the ecological value of the Dongcheon Estuary and protect the wetland, and presented the conservation management method of the Dongcheon Estuary. Based on the result of topographical landscape analysis, agricultural land tended to decrease continuously, and artificial structures gradually increased. Moreover, in sediment analysis, the Dongcheon Estuary showed both the characteristics of river sediments and coastal sediments, and in some areas problems such as acidification and nutritional imbalance appeared. Therefore, in order to protect and manage the Dongcheon Estuary with high ecological value, it is necessary to limit the development around micro topography and minimize the artificial damage in the Dongcheon Estuary. In addition, efforts such as securing facilities for reducing pollutants and freshwater wetlands for pollutants, that flow in from nonpoint pollutants are required.

인공습지 조성 후 습지미생물활성도 변화에 관한 연구 (Change of Wetland Microbial Activities after Creation of Constructed Wetlands)

  • 이자연;김보라;박소영;성기준
    • 한국환경과학회지
    • /
    • 제19권1호
    • /
    • pp.17-26
    • /
    • 2010
  • To understand the initial changes in the microbial activities of wetland soil after construction, dehydrogenase activity (DHA) and denitrification potential (DNP) of soil from 1 natural wetland and 2 newly constructed wetlands were monitored. Soil samples were collected from the Daepyung marsh as a natural wetland, a treatment wetland in the West Nakdong River, and an experimental wetland in the Pukyong National University, Busan. The results showed that the DHA of the natural wetland soil was 6.1 times higher than that of the experimental wetland and similar to that of the treatment wetland 6 months after wetland construction (fall). Few differences were observed in the DNP between the soil samples from the natural wetland and 2 constructed wetlands four months after wetland construction (summer). However, 6 months after the construction (fall), the DNP of the soil samples from the natural wetland was 12.9 times and 1.8 times higher than that of the experimental wetland and the treatment wetland, respectively. These results suggested that the presence of organic matter as a carbon source in the wetland soil affects the DHA of wetland soil. Seasonal variation of wetland environment, acclimation time under anaerobic or anoxic wetland conditions, and the presence of carbon source also affect the DNP of the wetland soil. The results imply that the newly constructed wetland requires some period of time for having the better contaminant removal performance through biogeochemical processes. Therefore, those microbial activities and related indicators could be considered for wetland management such as operation and performance monitoring of wetlands.