• Title/Summary/Keyword: WEATHER FACTOR

Search Result 429, Processing Time 0.03 seconds

Micro Feeding Site Preference of Wintering Cranes by Topography and Vegetation in Cheorwon Basin, Korea (철원지역에서 월동하는 두루미류의 지형과 식생에 의한 미소 취식지 선호성)

  • Yoo, Seung-Hwa;Kim, In-Kyu;Lee, Han-Soo;Lee, Ki-Sup
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.5
    • /
    • pp.418-430
    • /
    • 2009
  • The main purpose of this study is to investigate the relationship between the topography of land and vegetation and the preferred habitat of wintering cranes. Investigations were conducted twelve times in Cheorwon basin, South Korea, during two wintering seasons (12/2005 - 2/2006; 1/2007 - 2/2007). The density of rice grain in the middle of rice paddies was higher than that of the areas along the edge of rice paddies. However it was observed that red-naped cranes preferred to feed along the edges of rice paddies rather than to feed in the middle of the paddies. White-naped cranes, on the other hand, Preferred to feed in the middle of paddies. To be more specific, red-crowned cranes preferred feeding sites such as levees of the paddies or the areas where the level of the rice beds was comparatively more elevated. But the preference of the white-naped cranes turned out to be just the opposite. Another finding was that both red-naped cranes and white-naped cranes preferred concealed areas for their feeding site, and the frequency rate of their feeding in concealed areas has little to do with weather factors. This finding contradicts a widely accepted view that cranes prefer open spaces for their feeding site. Besides, red-crowned cranes, compared with white-naped cranes, preferred to feed in more concealed areas. The frequency rate of feeding in both concealed areas and non-concealed areas had little to do with the size of feeding flocks. There was no difference between a flock of fewer than five cranes and a flock of more than five cranes in terms of frequency rate of their feeding. In conclusion, the result of these investigations indicate that red-naped cranes comparatively prefer concealed areas for their feeding site, and white-naped cranes are less prone to them, and there is no direct connection between their preference of feeding site or frequency and the size of their flock. This is presumed to be the characteristics unique to their individual species.

Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study (산악기상관측정보를 이용한 위성정보 기반의 전천후 기온 자료의 평가 - 강원권역을 중심으로)

  • Jang, Keunchang;Won, Myoungsoo;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Surface air temperature ($T_{air}$) is a key variable for the meteorology and climatology, and is a fundamental factor of the terrestrial ecosystem functions. Satellite remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides an opportunity to monitor the $T_{air}$. However, the several problems such as frequent cloud cover and mountainous region can result in substantial retrieval error and signal loss in MODIS $T_{air}$. In this study, satellite-based $T_{air}$ was estimated under both clear and cloudy sky conditions in Gangwon Province using Aqua MODIS07 temperature profile product (MYD07_L2) and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature ($T_b$) at 37 GHz frequency, and was compared with the measurements from the Automated Mountain Meteorology Stations (AMOS). The application of ambient temperature lapse rate was performed to improve the retrieval accuracy in mountainous region, which showed the improvement of estimation accuracy approximately 4% of RMSE. A simple pixel-wise regression method combining synergetic information from MYD07_L2 $T_{air}$ and AMSR2 $T_b$ was applied to estimate surface $T_{air}$ for all sky conditions. The $T_{air}$ retrievals showed favorable agreement in comparison with AMOS data (r=0.80, RMSE=7.9K), though the underestimation was appeared in winter season. Substantial $T_{air}$ retrievals were estimated 61.4% (n=2,657) for cloudy sky conditions. The results presented in this study indicate that the satellite remote sensing can produce the surface $T_{air}$ at the complex mountainous region for all sky conditions.

Change in Yield and Quality Characteristics of Rice by Drought Treatment Time during the Seedling Stage (벼 이앙 직후 유묘기 한발 피해시기에 따른 수량 및 미질 특성 변화)

  • Jo, Sumin;Cho, Jun-Hyeon;Lee, Ji-Yoon;Kwon, Young-Ho;Kang, Ju-Won;Lee, Sais-Beul;Kim, Tae-Heon;Lee, Jong-Hee;Park, Dong-Soo;Lee, Jeom-Sig;Ko, Jong-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.344-352
    • /
    • 2019
  • Drought stress caused by global climate change is a serious problem for rice cultivation. Increasingly frequent abnormal weather occurrences could include severe drought, which could cause water stress to rice during the seedling stage. This experiment was conducted to clarify the effects of drought during the seedling period on yield and quality of rice. Drought conditions were created in a rain shelter house facility. The drought treatment was conducted at 3, 10, and 20 days after transplanting. Soil water content was measured by a soil moisture sensor during the whole growth stage. In this study, we have chosen 3 rice cultivars which are widely cultivated in Korea: 'Haedamssal' (Early maturing), 'Samkwang' (Medium maturing), and 'Saenuri' (Mid-late maturing). The decrease in yield due to drought treatment was most severe 3 days after transplanting because of the decrease in the number of effective tillers. The decrease in grain quality due to drought treatment was also most severe 3 days after transplanting because of the increased protein content and hardness of the grains. The cultivar 'Haedamssal' was the most severely damaged by water stress, resulting in about a 30% yield loss. Drought conditions diminished the early vigorous growth period and days to heading in early-maturing cultivars. The results show that drought stress affects yield components immediately after transplanting, which is a decisive factor in reducing yield and grain quality. This study can be used as basic data to calculate damage compensation for drought damage on actual rice farms.

Growth Inhibitory Factors of Italian Ryegrass (Lolium multiflorum Lam.) after Broadcasting under Growing Rice from 2014 to 2015 (2014 / 2015년 이탈리안 라이그라스 (Lolium multiflorum Lam.)의 벼 입모 중 파종 재배시 생육저해 요인 분석)

  • Kim, Young-Jin;Choi, Ki-Choon;Lee, Sang-Hak;Jung, Jeong-Sung;Park, Hyung-Soo;Kim, Ki-Yong;Ji, Hee-Chung;Lee, Sang-Hoon;Choi, Gi-Jun;Kim, Won-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • The growth of Italian ryegrass (IRG) after wintering was very low in 2015 when IRG was broadcasted under growing rice in fall of 2014. To determine growth inhibitory factors of IRG, we examined the growth conditions of IRG in Nonsan region and meteorological conditions in Daejeon nearby Nonsan. Minimum temperature and maximum instantaneous wind speed on Feb. $8^{th}$ and $9^{th}$ of 2015 after wintering of IRG were $8.8^{\circ}C$, 10.7 m/s and $12.4^{\circ}C$, 9.6m/s, respectively. Air temperature was suddenly dropped due to strong wind with snow showers, which had unfavorable effect on root growth of IRG exposed at the soil surface. The minimum temperature and maximum instantaneous wind speed on Feb. $12^{th}$, $13^{th}$, and $14^{th}$ of 2015 were $4.1^{\circ}C$, 11.6 m/s, $-5.6^{\circ}C$, 10.3 m/s, and $-4.7^{\circ}C$, 7.5 m/s, respectively. The growth circumstance of IRG was not good because soil was dried due to drought continued from January. The minimum temperature and maximum instantaneous wind speed on Feb. $26^{th}$, $27^{th}$, and $28^{th}$ of 2015 were $1.8^{\circ}C$, 13.7 m/s, $-3.5^{\circ}C$, 10.6 m/s, and $4.1^{\circ}C$, 6.8 m/s, respectively. The number of wilting of IRG was more than 59% until Mar. $3^{rd}$ of 2015. IRG faced irreparable environment (low minimum temperatures and extreme instantaneous wind speeds) for 9 days from Mar. $4^{th}$ to Mar. $12^{th}$ of 2015. The main reason for the decrease of IRG productivity was collection delay of rice straw after rice harvest because there was continuous rain between Oct. and Nov. of 2014. For this reason, weakly grown IRG under rice straw was withered after wintering. IRG was withered by frost heaving, drought, and instantaneous wind speed in the spring. Furthermore, the root of IRG was damaged while growing in excess moisture in the surface of paddy soil during the winter season due to rain.

A case study on monitoring the ambient ammonia concentration in paddy soil using a passive ammonia diffusive sampler (논 토양에서 암모니아 배출 특성 모니터링을 위한 수동식 암모니아 확산형 포집기 이용 사례 연구)

  • Kim, Min-Suk;Park, Minseok;Min, Hyun-Gi;Chae, Eunji;Hyun, Seunghun;Kim, Jeong-Gyu;Koo, Namin
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.100-107
    • /
    • 2021
  • Along with an increase in the frequency of high-concentration fine particulate matter in Korea, interest and research on ammonia (NH3) are actively increasing. It is obvious that agriculture has contributed significantly to NH3 emissions. However, studies on the long-term effect of fertilizer use on the ambient NH3 concentration of agricultural land are insufficient. Therefore, in this study, NH3 concentration in the atmosphere of agricultural land was monitored for 11 months using a passive sampler. The average ambient NH3 concentration during the total study period was 2.02 ㎍ m-3 and it was found that the effect of fertilizer application on the ambient NH3 concentration was greatest in the month immediately following fertilizer application (highest ambient NH3 concentration as 11.36㎍ m-3). After that, it was expected that the NH3 volatilization was promoted by increases in summer temperature and the concentration in the atmosphere was expected to increase. However, high NH3 concentrations in the atmosphere were not observed due to strong rainfall that lasted for a long period. After that, the ambient NH3 concentration gradually decreased through autumn and winter. In summary, when studying the contribution of fertilizer to the rate of domestic NH3 emissions, it is necessary to look intensively for at least one month immediately after fertilizer application, and weather information such as precipitation and no-rain days should be considered in the field study.

Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system (비순환식 양액재배에서 발생하는 폐양액, 폐배지, 폐작물이 환경에 미치는 영향)

  • Park, Bounglog;Cho, Hongmok;Kim, Minsang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2021
  • Hydroponic farming is a method to grow a plant without soil. Plants can be grown on water or hydroponic growing media, and they are fed with mineral nutrient solutions, which are fertilizers dissolved into water. Hydroponic farming has the advantage of increasing plant productivity over conventional greenhouse farming. Previous studies of hydroponic nutrient wastewater from acyclic hydroponic farms pointed out that hydroponic nutrient wastewater contained residual nutrients, and they were drained to a nearby river bank which causes several environmental issues. Also, previous studies suggest that excessive use of the nutrient solution and disposal of used hydroponic growing media and crop wastes in hydroponic farms are major problems to hydroponic farming. This study was conducted to determine the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment by analyzing water quality and soil analysis of the above three factors. Three soil cultivation farms and several hydroponic farms in the Gangwon C region were selected for this study. Samples of water and soils were collected from both inside and outside of each farm. Also, a sample of soil and leachate from crop waste piles stacked near the farm was collected for analysis. Hydroponic nutrient wastewater from acyclic hydroponic farm contained an average of 402 mg/L of total nitrogen (TN) concentration, and 77.4 mg/L of total phosphate (TP) concentration. The result of TP in hydroponic nutrient wastewater exceeds the living environmental standard of the river in enforcement decree of the framework act on environmental policy by 993.7 times. Also, it exceeds the standard of industrial wastewater discharge standards under the water environment conservation act by 6~19 times in TN, and 2~27 times in TP. Leachate from crop waste piles contained 11,828 times higher COD and 395~2662 times higher TP than the standard set by the living environmental standard of the river in enforcement decree of the framework act on environmental policy and exceeds 778 times higher TN and 5 times higher TP than the standard of industrial wastewater discharge standards under the water environment conservation act. For more precise studies of the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment, additional information regarding a number of hydroponic farms, arable area(ha), hydroponic farming area, seasonal, weather, climate factor around the river, and the property of the area and farm is needed. Analysis of these factors and additional water and soil samples are needed for future studies.

Factors Influencing the Activation of Brown Adipose Tissue in 18F-FDG PET/CT in National Cancer Center (양전자방출단층촬영 시 갈색지방조직 활성화에 영향을 미치는 요인 분석)

  • You, Yeon Wook;Lee, Chung Wun;Jung, Jae Hoon;Kim, Yun Cheol;Lee, Dong Eun;Park, So Hyeon;Kim, Tae-Sung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • Purpose Brown fat, or brown adipose tissue (BAT), is involved in non-shivering thermogenesis and creates heat through glucose metabolism. BAT activation occurs stochastically by internal factors such as age, sex, and body mass index (BMI) and external factors such as temperature and environment. In this study, as a retrospective, electronic medical record (EMR) observation study, statistical analysis is conducted to confirm BAT activation and various factors. Materials and Methods From January 2018 to December 2019, EMR of patients who underwent PET/CT scan at the National Cancer Center for two years were collected, a total of 9155 patients were extracted, and 13442 case data including duplicate scan were targeted. After performing a univariable logistic regression analysis to determine whether BAT activation is affected by the environment (outdoor temperature) and the patient's condition (BMI, cancer type, sex, and age), A multivariable regression model that affects BAT activation was finally analyzed by selecting univariable factors with P<0.1. Results BAT activation occurred in 93 cases (0.7%). According to the results of univariable logistic regression analysis, the likelihood of BAT activation was increased in patients under 50 years old (P<0.001), in females (P<0.001), in lower outdoor temperature below 14.5℃ (P<0.001), in lower BMI (P<0.001) and in patients who had a injection before 12:30 PM (P<0.001). It decreased in higher BMI (P<0.001) and in patients diagnosed with lung cancer (P<0.05) In multivariable results, BAT activation was significantly increased in patients under 50 years (P<0.001), in females (P<0.001) and in lower outdoor temperature below 14.5℃ (P<0.001). It was significantly decreased in higher BMI (P<0.05). Conclusion A retrospective study of factors affecting BAT activation in patients who underwent PET/CT scan for 2 years at the National Cancer Center was conducted. The results confirmed that BAT was significantly activated in normal-weight women under 50 years old who underwent PET/CT scan in weather with an outdoor temperature of less than 14.5℃. Based on this result, the patient applied to the factor can be identified in advance, and it is thought that it will help to reduce BAT activation through several studies in the future.

Developing domestic flood resilience indicators and assessing applicability and significance (국내 홍수회복력 지표 개발과 적용성 및 중요도 평가)

  • Kim, Soohong;Jung, Kichul;Kang, Hyeongsik;Shin, Seoyoung;Kim, Jieun;Park, Daeryong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.533-548
    • /
    • 2024
  • Due to climate change with extreme weather events, occurrences of unprecedented heavy rainfall have become more frequent. Since it is difficult to perfectly predict and prevent flood damages, the limitation of traditional prevention-centered approaches has come a issue. The concept of "resilience" has therefore been developed which emphasizes the ability to swiftly recover from damages to previous states or to even better conditions. In this study, we 1) developed a total of 20 domestic flood resilience indicators based on the 4R principles (Redundancy, Robustness, Rapidity, Resourcefulness), 2) conducted applicability evaluations targeting specific disaster-prone areas, and 3) assessed the importance of each indicator through Analytic Hierarchy Process (AHP) analysis with flood-related experts. To confirm the suitability of the developed flood resilience indicators, multicollinearity analysis was performed, and the results indicated that all 20 indicators had tolerance limits above 0.1 and Variance Inflation Factors (VIF) below 10, demonstrating suitability as factors. Furthermore, evaluations of proposed indicators were carried out targeting disaster-prone areas in 2022(21 areas), and AHP analysis was utilized to determine the relative importance of each indicator. The analysis revealed that the importance of each indicator was as follows: Robustness 0.46, Rapidity 0.22, Redundancy 0.17, and Resourcefulness 0.16, with Robustness exhibiting the highest importance. Regarding the sub-indicators that had the greatest influence on each 4R component, river embankment maintenance emerged as the most influential for Robustness, healthcare services for Rapidity, fiscal autonomy of local governments for Resourcefulness, and drainage facilities for Redundancy.

Mineral Nutrition of the Field-Grown Rice Plant -[I] Recovery of Fertilizer Nitrogen, Phosphorus and Potassium in Relation to Nutrient Uptake, Grain and Dry Matter Yield- (포장재배(圃場栽培) 수도(水稻)의 무기영양(無機營養) -[I] 삼요소이용률(三要素利用率)과 양분흡수량(養分吸收量), 수량(收量) 및 건물생산량(乾物生産量)과(乾物生産量)의 관계(關係)-)

  • Park, Hoon
    • Applied Biological Chemistry
    • /
    • v.16 no.2
    • /
    • pp.99-111
    • /
    • 1973
  • Percentage recovery or fertilizer nitrogen, phosphorus and potassium by rice plant(Oriza sativa L.) were investigated at 8, 10, 12, 14 kg/10a of N, 6 kg of $P_2O_5$ and 8 kg of $K_2O$ application level in 1967 (51 places) and 1968 (32 places). Two types of nutrient contribution for the yield, that is, P type in which phosphorus firstly increases silicate uptake and secondly silicate increases nitrogen uptake, and K type in which potassium firstly increases P uptake and secondly P increases nitrogen uptake were postulated according to the following results from the correlation analyses (linear) between percentage recovery of fertilizer nutrient and grain or dry matter yields and nutrient uptake. 1. Percentage frequency of minus or zero recovery occurrence was 4% in nitrogen, 48% in phosphorus and 38% in potassium. The frequency distribution of percentage recovery appeared as a normal distribution curve with maximum at 30 to 40 recovery class in nitrogen, but appeared as a show distribution with maximum at below zero class in phosphorus and potassium. 2. Percentage recovery (including only above zero) was 33 in N (above 10kg/10a), 27 in P, 40 in K in 1967 and 40 in N, 20 in P, 46 in Kin 1968. Mean percentage recovery of two years including zero for zero or below zero was 33 in N, 13 in P and 27 in K. 3. Standard deviation of percentage recovery was greater than percentage recovery in P and K and annual variation of CV (coefficient of variation) was greatest in P. 4. The frequency of significant correlation between percentage recovery and grain or dry matter yield was highest in N and lowest in P. Percentage recovery of nitrogen at 10 kg level has significant correlation only with percentage recovery of P in 1967 and only with that of potassium in 1968. 5. The correlation between percentage recovery and dry matter yield of all treatments showed only significant in P in 1967, and only significant in K in 1968, Negative correlation coefficients between percentage recovery and grain or dry matter yield of no or minus fertilizer plots were shown only in K in 1967 and only in P in 1968 indicating that phosphorus fertilizer gave a distinct positive role in 1967 but somewhat' negative role in 1968 while potassium fertilizer worked positively in 1968 but somewhat negatively in 1967. 6. The correlation between percentage recovery of nutrient and grain yield showed similar tendency as with dry matter yield but lower coefficients. Thus the role of nutrients was more precisely expressed through dry matter yield. 7. Percentage recovery of N very frequently had significant correlation with nitrogen uptake of nitrogen applied plot, and significant negative correlation with nitrogen uptake of minus nitrogen plot, and less frequently had significant correlation with P, K and Si uptake of nitrogen applied plot. 8. Percentage recovery of P had significant correlation with Si uptake of all treatments and with N uptake of all treatments except minus phosphorus plot in 1967 indicating that phosphorus application firstly increases Si uptake and secondly silicate increases nitrogen uptake. Percentage recovery of P also frequently had significant correlation with P or K uptake of nitrogen applied plot. 9. Percentage recovery of K had significant correlation with P uptake of all treatments, N uptake of all treatments except minus phosphorus plot, and significant negative correlation with K uptake of minus K plot and with Si uptake of no fertilizer plot or the highest N applied plot in 1968, and negative correlation coefficient with P uptake of no fertilizer or minus nutrient plot in 1967. Percentage recovery of K had higher correlation coefficients with dry matter yield or grain yield than with K uptake. The above facts suggest that K application firstly increases P uptake and secondly phosphorus increases nitrogen uptake for dry matter yied. 10. Percentage recovery of N had significant higher correlation coefficient with grain yield or dry matter yield of minus K plot than with those of minus phosphorus plot, and had higher with those of fertilizer plot than with those of minus K plot. Similar tendency was observed between N uptake and percentage recovery of N among the above treatments. Percentage recovery of K had negative correlation coefficient with grain or-dry matter yield of no fertilizer plot or minus nutrient plot. These facts reveal that phosphorus increases nitrogen uptake and when phosphorus or nitrogen is insufficient potassium competatively inhibits nitrogen uptake. 11. Percentage recovery of N, Pand K had significant negative correlation with relative dry matter yield of minus phosphorus plot (yield of minus plot x 100/yield of complete plot; in 1967 and with relative grain yield of minus K plot in 1968. These results suggest that phosphorus affects tillering or vegetative phase more while potassium affects grain formation or Reproductive phase more, and that clearly show the annual difference of P and K fertilizer effect according to the weather. 12. The correlation between percentage recovery of fertilizer and the relative yield of minus nutrient plat or that of no fertilizer plot to that of minus nutrient plot indicated that nitrogen is the most effective factor for the production even in the minus P or K plot. 13. From the above facts it could be concluded that about 40 to 50 percen of paddy fields do rot require P or K fertilizer and even in the case of need the application amount should be greatly different according to field and weather of the year, especially in phosphorus.

  • PDF