• Title/Summary/Keyword: WDR

Search Result 50, Processing Time 0.02 seconds

Dopaminergic Inhibition of Dorsal Horn Cell Activity in the Cat

  • Kim, Kyung-Chul;Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.661-670
    • /
    • 1998
  • Dopamine has been generally known to exert antinociceptive action in behavioral pain test, such as tail flick and hot plate test, but there appears to be a great variance in the reports on the antinociceptive effect of dopamine depending on the dosage and route of drug administration and type of animal preparation. In the present study, the effects of dopamine on the responses of wide dynamic range (WDR) cells to mechanical, thermal and graded electrical stimuli were investigated, and the dopamine-induced changes in WDR cell responses were compared between animals with an intact spinal cord and the spinal animals. Spinal application of dopamine (1.3 & 2.6 mM) produced a dose-dependent inhibiton of WDR cell responses to afferent inputs, the pinch-induced or the C-fiber evoked responses being more strongly depressed than the brush-induced or the A-fiber evoked responses. The dopamine-induced inhibition was more pronounced in the spinal cat than in the cat with intact spinal cord. The responses of WDR cell to thermal stimulation were also strongly inhibited. Dopamine $D_2$ receptor antagonist, sulpiride, but not $D_1$ receptor antagonist, significantly blocked the inhibitory action of dopamine on the C-fiber and thermal responses of dorsal horn cells. These findings suggest that dopamine strongly suppresses the responses of WDR cells to afferent signals mainly through spinal dopamine $D_2$ receptors and that spinal dopaminergic processes are under the tonic inhibitory action of the descending supraspinal pathways.

  • PDF

Modification in the Responsiveness of Dorsal Horn Cells during Allyl Isothiocyanate-Induced Inflammation in the Cat (Allyl Isothiocyanate 유발 피부염에 의한 척수후각세포의 활동성 변동)

  • Yun, Young-Bok;Kim, Jin-Hyuk;Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.305-317
    • /
    • 1990
  • The present study was performed to investigate modification in the electrophysiological characteristics of cat dorsal horn cells during neurogenic inflammation induced by mustard oil. The results obtained were summarized as follows: 1) Following subcutaneous injection of mustard oil the majority of wide dynamic range (WDR) cells (10/15 units) showed enhanced responses (80%) to brush, while the responses to all types of mechanical stiumli were enhanced in 3/15 units. One cell was further activated by pinch and the another was not affected at all after induction of inflammation. 2) The sensitization of WDR cell was resulted from subcutaneous injection of mustard oil either inside or outside of the receptive field (RF), whereas the spontaneous activity increased only after mustard oil was injected inside of the RF. 3) In the animal with inflammation the responses of high threshold (HT) cell to noxious stimulus were not altered, while HT cell responded to such mechanical stimulus as pressure which was usually ineffective in normal animals. 4) After induction of inflammation, low threshold (LT) cell appeared to be converted to WDR cell, showing responses not only to brush but also to pressure and pinch. 5) The mustard oil-induced inflammation enhanced responses of WDR and HT cells to the thermal stimuli and also resulted in a pronounced after-discharge in WDR cells. 6) After subcutaneous injection of lidocaine, the increased background activity of WDR cells due to inflammation was almost completely abolished. 7) A subcutaneous injection of mustard oil inside of the RF invariably desensitized the dorsal horn cells which receive sensory inputs from the inflamed RF. From the results of Present study it was revealed that a neurogenic inflammation induced by mustard oil resulted in an enhancement of responses of cat dorsal horn cells to mechanical and thermal stimuli.

  • PDF

A Simulation-based Genetic Algorithm for a Dispatching Rule in a Flexible Flow Shop with Rework Process (시뮬레이션 기반 유전알고리즘을 이용한 디스패칭 연구: 재작업이 존재하는 유연흐름라인을 대상으로)

  • Gwangheon Lee;Gwanguk Han;Bonggwon Kang;Seonghwan Lee;Soondo Hong
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.75-87
    • /
    • 2022
  • This study investigates a dynamic flexible flow shop scheduling problem under uncertain rework operations for an automobile pipe production line. We propose a weighted dispatching rule (WDR) based on the multiple dispatching rules to minimize the weighted sum of average flowtime and tardiness. The set of weights in WDR should be carefully determined because it significantly affects the performance measures. We build a discrete-event simulation model and propose a genetic algorithm to optimize the set of weights considering complex and variant operations. The simulation experiments demonstrate that WDR outperforms the baseline dispatching rules in average flowtime and tardiness.

Modification in the Responsiveness of Cat Dorsal Horn Cells during Carrageenin-Induced Inflammation (피부염에 의해 유발된 척수후각세포의 Activity 변동에 관한 연구)

  • Kim, Kee-Soon;Shin, Hong-Kee;Kim, Jin-Hyuk;Lee, Ae-Joo;Kang, Suck-Han
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.151-167
    • /
    • 1989
  • The present study was undertaken to investigate modification in electrophysiological characteristics of cat dorsal horn cells resulting from carrageenin-induced inflammation. The followings were studied; 1) the time-course of changes in responses of the WDR (wide dynamic range) cell 1-3h after subcutaneous injection of carrageenin in its receptive field; 2) the responses of the same dorsal hern cells before and after induction of inflammation; 3) the effect of inflammation on the responsiveness of dorsal horn neurons to algogens (bradykinin & potassium); and 4) the effect of inflammation on the activity of WDR cell following administration of indomethacin and clonidine. Though responses of WDR neuron were increased dramatically during first 1h, the maximal enhancement was observed 3h after induction of inflammation especially by repetitive light tactile stimulus. Following carrageenin injection the majority of WDR neurons (10/15 units) showed enhanced responses to all the mechanical stimuli while in 3 cases responsiveness were intensified during activation by one tactile stimulus (brush or pressure). One cell was unaffected by inflammation and in another case the response was enhanced only to noxious stimulus. Five of 9 cells that could initially be driven by noxious stimulus were activated more strongly by same stimulus and even by tactile stimulus (pressure) following inflammation. In 2 cases neurons were sensitized only to noxious stimulus whereas in another 2 cells that did not show enhanced responses to noxious stimulus responses to light tactile stimulus (pressure) appeared after inflammation. Of 16 LT cells tested 6 responded to squeeze while 4 showed the characteristics of WDR cell following inflammation. No modification in responsiveness was recognized in 3 cells whereas response to only brush was enhanced in another 3 neurons. Following carrageenin injection responses of LT cell to bradykinin or $K^{+}$ were not altered whereas those of WOR neurons to bradykinin or $K^{+}$ were suppressed in 22.2% and 33.3% of cases, respectively. In two of 8 activity of HT cells were inhibited by bradykinin while in five of 8 responsiveness to $K^{+}$ were rather enhanced by inflammation. In the rest inflammation was ineffective. In inflammation-induced animal the receptive field of LT cell was not changed whereas those of WDR cell and HT cell were tremendously expanded. The enhanced responses of WDR neurons to mechanical stimuli resulted from inflammation were suppressed by intravenously injected indomethacin and clonidine suggesting that postaglandin is involved in inflammation-induced sensitization of these cells. The involvement of peripheral and central mechanisms in the modification in responsiveness of dorsal horn cells in the carrageenin-induced inflammation was discussed.

  • PDF

Magnesium Suppresses the Responses of Dorsal Horn Cell to Noxious Stimuli in the Rat

  • Shin, Hong-Kee;Kim, Jin-Hyuk;Kim, Kee-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.237-244
    • /
    • 1999
  • Magnesium ion is known to selectively block the N-methyl-D-aspartate (NMDA)-induced responses and to have anticonvulsive action, neuroprotective effect and antinociceptive action in the behavioral test. In this study, we investigated the effect of $Mg^{2+}$ on the responses of dorsal horn neurons to cutaneous thermal stimulation and graded electrical stimulation of afferent nerves as well as to excitatory amino acids and also elucidated whether the actions of $Ca^{2+}$ and $Mg^{2+}$ are additive or antagonistic. $Mg^{2+}$ suppressed the thermal and C-fiber responses of wide dynamic range (WDR) cell without any effect on the A-fiber responses. When $Mg^{2+}$ was directly applied onto the spinal cord, its inhibitory effect was dependent on the concentration of $Mg^{2+}$ and duration of application. The NMDA- and kainate-induced responses of WDR cell were suppressed by $Mg^{2+}$, the NMDA-induced responses being inhibited more strongly. $Ca^{2+}$ also inhibited the NMDA-induced responses current-dependently. Both inhibitory actions of $Mg^{2+}$ and $Ca^{2+}$ were additive, while $Mg^{2+}$ suppressed the EGTA-induced augmentation of WDR cell responses to NMDA and C-fiber stimulation. Magnesium had dual effects on the spontaneous activities of WDR cell. These experimental findings suggest that $Mg^{2+}$ is implicated in the modulation of pain in the rat spinal cord by inhibiting the responses of WDR cell to noxious stimuli more strongly than innocuous stimuli.

  • PDF

Calcium Modulates Excitatory Amino Acid (EAA)- and Substance P-induced Rat Dorsal Horn Cell Responses

  • Shin, Hong-Kee;Kang, Sok-Han;Chung, In-Duk;Kim, Kee-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.35-45
    • /
    • 1999
  • Excitatory amino acid (EAA) and substance P (SP) have been known to be primary candidates for nociceptive neurotransmitter in the spinal cord, and calcium ions are implicated in processing of the sensory informations mediated by EAA and SP in the spinal cord. In this study, we examined how $Ca^{2+}$ modified the responses of dorsal horn neurons to single or combined iontophoretical application of EAA and SP in the rat. All the LT cells tested responded to kainate, whereas about 55% of low threshold (LT) cells responded to iontophoretically applied NMDA. NMDA and kainate excited almost all wide dynamic range (WDR) cells. These NMDA- and kainate-induced WDR cell responses were augmented by iontophoretically applied EGTA, but suppressed by $Ca^{2+},\;Mn^{2+},$ verapamil and ${\omega}-conotoxin$ EVTA, effect of verapamil being more prominent and well sustained. $Ca^{2+}$ and $Mn^{2+}$ antagonized the augmenting effect of EGTA. On the other hand, prolonged spinal application of EGTA suppressed the response of WDR cell to NMDA. SP had triple effects on the spontaneous activity as well as NMDA-induced responses of WDR cells: excitation, inhibition and no change. EGTA augmented, but $Ca^{2+},\;Mn^{2+}$ and verapamil suppressed the increase in the NMDA-induced responses and spontaneous activities of WDR cells following iontophoretical application of SP. These results suggest that in the spinal cord, sensory informations mediated by single or combined action of EAA and SP can be modified by the change in calcium ion concentration.

  • PDF

Suppression by Microinjection of Bicuculline into Brain Stem Nuclei of Dorsal Horn Neuron Responsiveness in Neuropathic Rats (신경병증성통증 모델쥐에서 뇌간핵 부위에 미세 주입한 Bicuculline에 의한 척수후각세포의 반응도 억제)

  • Leem, Joong-Woo;Choi, Yoon;Lee, Jae-Hwan;Nam, Taick-Sang;Paik, Kwang-Se
    • The Korean Journal of Pain
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 1998
  • Background: The present study was conducted to investigate effects of microinjection of bicuculline, GABA-A receptor antagonist, into the brain stem nuclei on the dorsal horn neuron responsiveness in rats with an experimental peripheral neuropathy. Methods: An experimental neuropathy was induced by a unilateral ligation of L5~L6 spinal nerves of rats. After 2~3 weeks after the surgery, single-unit recording was made from wide dynamic range (WDR) neurons in the spinal cord dorsal horn. Results: Responses of WDR neurons to both noxious and innocuous mechanical stimuli applied to the somatic receptive fields were enhanced on the nerve injured side. These enhanced responsiveness of WDR neurons were suppressed by microinjection of bicuculline into periaqueductal gray(PAG) or nucleus reticularis gigantocellularis(Gi). A similar suppression was also observed when morphine was microinjected into PAG or Gi. Suppressive action by Gi-bicuculline was reversed by naloxonazine, ${\mu}$-opioid receptor antagonist, microinjected into PAG whereas PAG-bicuculline induced suppression was not affected by naloxonazine injection into Gi. Gi-bicuculline induced suppression were reversed by a transection of dorsolateral funiculus(DLF) of the spinal cord. Conclusions: The results suggest that endogenous opioids, via acting on GABAergic interneurons in PAG and Gi, may be involved in the control of neuropathic pain by activating the descending inhibitory pathways that project to the spinal dorsal horn through DLF to inhibit the responsiveness of WDR neurons.

  • PDF

Effect of Clonidine on the Changes in Dorsal Horn Cell Activity Induced by Chemical Algogenics (통각유발물질에 의한 척수후각세포의 반응에 미치는 Clonidine의 영향)

  • Lee, Kwang-Hoon;Kim, Jin-Hyuk;Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.245-257
    • /
    • 1988
  • The present study was undertaken to investigate the effect of clonidine on the response of the dorsal horn cells to intra-arterially administered bradykinin $(BK:40{\mu}g)$ and $K^+(4mg)$ in spinal cats and cats with intact spinal cord. The change in the activities of low threshold (LT), high threshold (HT) and wide dynamic range (WDR) cells induced by BK and $K^+$ were determined before and after treatment of animals with clonidine. Also studied was mechanism of inhibitory action of clonidine on the responses of dorsal horn cells to the chemical algogenics. Number of WDR cell responded to intra-arterially administered BK and $K^+$ was greater in spinal animals than in cats with intact spinal cord. Following administration of BK or $K^+$ no change was observed in the activity of LT cell whereas activity of HT cell increased invariably. The increased response of HT cell to BK and $K^+$ was markedly suppressed by clonidine. On the other hand, such inhibitory actions of clonidine were almost completely blocked by yohimbine. The majority of WDR cells were activated by $K^+$ while response of WDR cells to BK was diverse (excitatory, inhibitory or mixed). These results indicate that clonidine inhibits responses of the dorsal horn cells not only to thermal or mechanical stimulations but also to chemical algogenics, and that the inhibitory action of clonidine is generally mediated through excitation of ${\alpha}_2-adrenoreceptors$.

  • PDF

Activation of spinal Serotonergic Receptor Contributes to Electroacupuncture Analgesia in Rat with Chronic Pain (만성통증이 유발된 흰쥐에서 관찰된 침진통효과의 세로토닌성 기전)

  • Park Dong-Suk;Shin Hong-Kee;Lee Kyung-Hee
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.239-248
    • /
    • 2005
  • Objectives : Electroacupuncture (EA)-induced analgesia has been known to be mediated through the activation of opioid, noradrenergic and serotonergic receptors. However, little study on serotonergic mechanism has been performed in an animal model of chronic pain. The present study was designed to elucidate the type of serotonergic receptors responsible for EA analgesia in the chronic pain model. Methods : In rats with complete Freund's: adjuvant-induced inflammation and spinal nerve injury, spinal wide dynamic range (WDR) cell responses to graded electrical stimulation of afferent C fiber were recorded before and after spinal application of selective 5-hydroxytryptamine (5-HT) receptor antagonists. EA stimulation (2Hz, 0.5msec, 3mA) was applied to the contralateral Zusanli point for 30 min. Results : In both models of chronic pain, WDR cell responses were greatly inhibited after EA stimulation. EA-induced inhibition of WDR celt responses was significantly attenuated by spinal application of non-selective 5-HT receptor antagonist, dihydroergocristine Of 5-HT receptor antagonists tested, 5-HT1A (WAY 100635) and 5-HT2 (LY53857) receptor antagonists strongly reduced an ability of EA stimulation to inhibit WDR cell responses. However, 5-HT1B (GR55562) and 5-HT3 (LY278584) receptor antagonists also had weak but significant blocking action on EA-induced inhibitory effect on chronic pain. Conclusions : Dorsal hem cell responses, afferent C fiber stimulation, chronic pain, electroacupuncture, serotonergic receptors.

  • PDF

Adenosine Agonist-induced Changes in the Transmission of Sensory Signals in the Cat Spinal Cord

  • Kim, Kee-Soon;Shin, Hong-Kee;Kim, Jin-Hyuk
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.85-96
    • /
    • 1996
  • Adenosine and its analogues are known to possess analgesic effects and to be involved in the opiate-induced antinociception as well. This study was designed to investigate the effects of three adenosine agonists, 5'- (N-cyclopropyl) -carboxamidoadenosine(CPCA), 5'-N-ethylcarboxamidoadeno-sine (NECA) and $N^6-cyclohexyladenosine$ (CHA) on the signal transmission in the spinal cord and also to elucidate mechanisms of their actions in the anesthetized cat. All the tested adenosine agonists(i.v,) exerted inhibitory effects on the responsiveness of the wide dynamic range (WDR) cells, the inhibitory action of CHA, an adenosine $A_1$ receptor agonist, $(80{\mu}g/Kg)$ being most weak. The intravenous CPCA, an adenosine $A_2$ receptor agonist, $(20{\mu}g\;/Kg)$ and NECA, nonspecific adenosine receptor agonist, $(20{\mu}g\;/Kg)$ inhibited the responses of WDR cells to pinch and C fiber stimulation more strongly than those to brush and A fiber stimulation. CPCA (i.v.) also suppressed the responses of WDR cells to thermal stimulus. And all the CPCA-induced inhibitions were caffeine-reversible. When CPCA was directly applied onto the spinal cord or intravenously administered into the spinal cat, on average, about three quarters of the CPCA-induced inhibitory effect was abolished. On the other hand, in the animal with spinal lesions in the ipsilateral dorsolateral area, the CPCA-induced inhibition was comparable to that observed in the spinal cats. In conclusion, this study shows that adenosine agonists strongly suppress the responses of WDR cells to pinch, C fiber stimulation and thermal stimuli mainly through the supraspinal adenosine $A_2-receptors$.

  • PDF