• Title/Summary/Keyword: WDM System

Search Result 263, Processing Time 0.026 seconds

Performance analysis of a MAC protocol on WDM slotted ring networks (WDM 슬러티드 링 네트워크의 MAC 프로토콜 성능분석)

  • 박강수;정수환;김종훈;신종덕
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.893-899
    • /
    • 2000
  • WDM technology has been an emerging issue for the efficient use of optical links. WDM uses a number of different wavelengths that are assigned to each channel. The minimal number of optical transcievers and receivers should be used in a node to build an economic WDM transmission system without degrading system performance. Hence, the analysis of performance parameters such as throughput and delay is important to guarantee the WDM system performance. In this paper, the performance of a MAC protocol on a slotted WDM system that has a tunable transmitter(TTX), a tunable receiver(TRX), and a fixed receiver(FRX), respectively, on each node, was statistically analyzed. The computer simulation validates the performance analysis.

  • PDF

Improvement of Bit Error Rate using the Optimal Parameters of Optical Phase Conjugator in WDM System with Non Zero - Dispersion Shifted Fiber (비영 분산 천이 광섬유를 갖는 WDM시스템에서 광 위상 공액기의 최적 파라미터를 이용한 비트 에러율 개선)

  • Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1854-1862
    • /
    • 2006
  • The numerical methods of finding out the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersions are prosed, which are able to effectively compensate overall channels in $8{\times}40Gbps$Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) as an optical fiber. And BER characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that the applying two induced optimal parameters into WDM system contribute to reduce power penalty to 4 times than that of WDM system with the conventional MSSI. Thus, the methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which generates a serious problem if it was not made but it is the condition in the case of applying the OPC into multi-channels WDM system.

BER Improvements of 0.96 Tbps WDM Signals through Optimal Parameter Values of Optical Phase Conjugator (광 위상 공액기의 최적 파라미터 값 도출을 통한 0.96 Tbps WDM 신호의 BER 개선)

  • Lee, Youngkyo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.79-88
    • /
    • 2015
  • In this paper, it is investigated that the limitation due to the asymmetry of optical power and chromatic dispersion with respect to optical phase conjugator (OPC) for compensating optical signal distortion in WDM system is overcomed by using OPC position offset and optimal dispersion coefficients of fiber sections, which depend on OPC position offset. It is confirmed that overall WDM channels are efficiently compensated by applying the optimal parameter values obtained from the proposed method into 24 channels ${\times}40$ Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) of 1, 000 km, such as power penalties of inter-channel are reduce to almost 3.5 dB from the infinite value. It is also confirmed that the flexible design of WDM system with OPC is possible by using the optimal parameters, in which OPC is placed at ${\pm}15km$ from 500 km for efficiently compensating overall channels. Thus, the methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which generates a serious problem if it was not made but it is the condition in the case of applying the OPC into multi-channels WDM system.

The Compensation Characteristics of WDM Channel Distortion Dependence on NRZ format and RZ Format (NRZ 형식과 RZ 형식에 따른 WDM채널 왜곡의 보상 특성)

  • 이성렬;조성언
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1184-1190
    • /
    • 2003
  • In this paper, we investigated the characteristics of compensation for distorted NRZ signal and RZ signal in 320 Gbps WDM system as a function of channel input power, fiber dispersion coefficient and transmission length, respectively. The considered WDM transmission system is based on mid-span spectral inversion(MSSI) compensation method having highly nonlinear dispersion shifted fiber(HNL-DSF) optical phase conjugator(OPC) in the mid-way of total transmission line. We confirmed that the signal input power range compensated by MSSI is broadened by using RZ as a signal format in WDM system with small fiber dispersion coefficient, The range of fiber dispersion coefficient compensating overall distorted WDM channels is limited, because degree of compensation for distorted channel with low conjugated-wave power becomes gradually degrade as fiber dispersion coefficient becomes gradually higher. It is showed that RZ format and NRZ format is suited for long-haul transmission in WDM system with small fiber dispersion coefficient and with large fiber dispersion coefficient, respectively.

Realization of All-Optical WDM Buffer Using Wavelength Routing (파장 라우팅 방식을 이용한 전광 WDM 버퍼 구현)

  • Choi Hoon;Eom Jin Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3A
    • /
    • pp.153-159
    • /
    • 2005
  • In this paper, we propose All-Optical WDM Buffer System for resolving the contention of Packets in Optical Packet Switching System. The proposed system consists of tunable wavelength converters based on SOA, N×N AWG, and fiber delay lines. This structure can reduce ASE and cross-talk noise because the contending packets are sent and buffered through each different path determined by a wavelength routing. We also performed buffering experiment for two contending WDM optical pulses with each 50ns width, and found that the contending problem is resolved well.

Interchannel RF Power Fluctuation in WDM-RoF System Employing Photonic Crystal Fiber (광결정 광섬유를 이용한 WDM-RoF 시스템의 채널간 전력변화 편차 분석)

  • Kim, So-Eun;Lee, Chung-Ghiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.821-828
    • /
    • 2012
  • In this paper, we report that the differences between RF power levels can be improved in wavelength division multiplexing - radio over fiber (WDM-RoF) system by using a photonic crystal fiber. In a WDM-RoF system, each WDM channel experiences different received RF power level fluctuation in remote node (RN) because of wavelength-dependent dispersion. Since each WDM channel experiences different power fluctuation, the RF power fluctuation acts as a design constraint in viewpoint of network design. We designed a photonic crystal fiber to improve the effect of wavelength- dependent dispersion on RF power fluctuation. Also, we analyzed the wavelength-dependent difference of inter-channel RF power fluctuations.

Cross Phase Modulation Effects on 120 Gbps WDM Transmission Systems with Mid-Span Spectral Inversion for Compensation of Distorted Optical Pulse (광 펄스 왜곡의 보상을 위해 Mid-Span Spectral Inversion 기법을 채택한 120 Gbps WDM 시스템에서 채널간 상호 위상 변조 현상의 영향)

  • 이성렬;권순녀;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.741-749
    • /
    • 2003
  • In this paper, we investigated the degree of compensation for WDM channel signal distortion due to chromatic dispersion, self phase modulation(SPM) and cross phase modulation(XPM). The considered system is 120 Gbps (3${\times}$40 Gbps) intensity modulation direct detection(IM/DD) WDM transmission system with path-averaged intensity approximation(PAIA) mid-span spectral inversion(MSSI) as compensation method. This system have highly nonlinear dispersion shifted fiber(HNL-DSF) as nonlinear medium in optical phase conjugator(OPC). We use 1 dB eye opening peralty(EOP) in order to evaluate the characteristics of compensation for distorted WDM channels. We confirmed that improvement of transmission distance and performance is achieved by MSSI method to distorted long-haul IM/DD WDM channels due to chromatic dispersion, SPM and XPM. And in the aspect of compensation for distorted pulse due to XPM, the MSSI method is effective to IM/DD WDM transmission system with high fiber dispersion coefficient.

Compensation for the Distorted Signals in WDM System with Non Zero-Dispersion Shifted Fiber Using Optical Phase Conjugator (비영 분산 천이 광섬유를 갖는 WDM 시스템에서 광 위상 공액기에 의한 왜곡된 광 신호의 보상)

  • Lee Seong-Real
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.546-555
    • /
    • 2006
  • In this paper, the numerical methods of finding the optimal position of optical phase conjugator(OPC) and the optimal fiber dispersions are proposed, which are able to effectively compensate overall channels in $8{\times}40$ Gbps WDM system with non zero-dispersion shifted fiber(NZ-DSF) as an optical fiber. And the compensation characteristics in the system with two induced optimal parameters are compared with those in the system with mid-span spectral inversion (MSSI) technique in order to confirm the availability of the proposed methods. It is confirmed that the optimal parameter values induced in this approach are very useful to effectively compensate overall channels in WDM system with OPC. And, it is confirmed that two optimal parameters depend on each other, but less related with the searching procedure. The methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which is a serious problem of applying the OPC into multi-channels WDM system.

Increase of Transmission Distance in 1 Tbps WDM Transmission System (1 Tbps WDM 전송 시스템의 전송 거리 신장)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.559-565
    • /
    • 2009
  • The implementation possibility and increasement of transmission distance of 1 Tbps WDM transmission systems through the applying optical link configuration with inline dispersion management (DM) and optical phase conjugator (OPC) is investigated. When the considered optical link configuration is applied into $26{\times}40$ Gbps WDM transmission system and the optimal net residual dispersions (NRDs) depending on transmission length are decided, the effective transmission distanceis highly increased than that resulted in same system with fixed 0 ps/nm NRD in all transmission length. And, design rule of inline DM optical link is also shown through inducing the effective range of precompensation and postcompensation depending on transmission distance and launching power of WDM channel.

  • PDF

The Flexible Design of 0.96 Tbps WDM System over 1,000km NZ-DSF by Using Optimal Parameters of Optical Phase Conjugator (광 위상 공액기의 최적 파라미터를 이용한 1,000km NZ-DSF를 갖는 0.96 Tbps WDM 시스템의 유연한 설계)

  • Lee, Seong-Real;Doh, Kyu-Bong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.657-665
    • /
    • 2007
  • In this paper, it is investigated that the limitation due to the asymmetry of optical power and chromatic dispersion with respect to optical phase conjugator (OPC) for compensating optical signal distortion of WDM channels in mid-span spectral inversion (MSSI) technique is overcame by using OPC position offset and optimal dispersion coefficients of fiber sections, which depend on OPC position offset. It is confirmed that overall WDM channels are efficiently compensated by applying the optimal parameter values obtained from the proposed method into 24 channels ${\times}\;40\;Gbps$ WDM system with non zero - dispersion shifted fiber (NZ-DSF) of 1,000 km, such as power penalties of inter-channel are reduce to almost 3.5 dB from the infinite value. It is also confirmed that the flexible design of WDM system with OPC is possible by using the optimal parameters, in which OPC is placed at ${\pm}15\;km$ from 500 km for efficiently compensating overall channels.