• Title/Summary/Keyword: WCET analysis

Search Result 27, Processing Time 0.019 seconds

Implementation of Worst Case Execution Time Analysis Tool For Embedded Software based on XScale Processor (XScale 프로세서 기반의 임베디드 소프트웨어를 위한 최악실행시간 분석도구의 구현)

  • Park, Hyeon-Hui;Choi, Myeong-Su;Yang, Seung-Min;Choi, Yong-Hoon;Lim, Hyung-Taek
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.365-374
    • /
    • 2005
  • Schedulability analysis is necessary to build reliable embedded real-time systems. For schedulability analysis, worst-case execution time(WCET) analysis that computes upper bounds of the execution times of tasks, is required indispensably. WCET analysis is done in two phases. The first phase is high-level analysis that analyzes control flow and finds longest paths of the program. The second phase is low-level analysis that computes execution cycles of basic blocks taking into account the hardware architecture. In this thesis, we design and implement integrated WCET analysis tools. We develop the WCET analysis tools for XScale-based system called WATER(WCET Analysis Tool for Embedded Real-time system). WATER consist of high-level flow analyzer and low-level execution time analyzer. Also, We compare real measurement for execution of program with analysis result calculated by WATER.

Counter-Based Approaches for Efficient WCET Analysis of Multicore Processors with Shared Caches

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.4
    • /
    • pp.285-299
    • /
    • 2013
  • To enable hard real-time systems to take advantage of multicore processors, it is crucial to obtain the worst-case execution time (WCET) for programs running on multicore processors. However, this is challenging and complicated due to the inter-thread interferences from the shared resources in a multicore processor. Recent research used the combined cache conflict graph (CCCG) to model and compute the worst-case inter-thread interferences on a shared L2 cache in a multicore processor, which is called the CCCG-based approach in this paper. Although it can compute the WCET safely and accurately, its computational complexity is exponential and prohibitive for a large number of cores. In this paper, we propose three counter-based approaches to significantly reduce the complexity of the multicore WCET analysis, while achieving absolute safety with tightness close to the CCCG-based approach. The basic counter-based approach simply counts the worst-case number of cache line blocks mapped to a cache set of a shared L2 cache from all the concurrent threads, and compares it with the associativity of the cache set to compute the worst-case cache behavior. The enhanced counter-based approach uses techniques to enhance the accuracy of calculating the counters. The hybrid counter-based approach combines the enhanced counter-based approach and the CCCG-based approach to further improve the tightness of analysis without significantly increasing the complexity. Our experiments on a 4-core processor indicate that the enhanced counter-based approach overestimates the WCET by 14% on average compared to the CCCG-based approach, while its averaged running time is less than 1/380 that of the CCCG-based approach. The hybrid approach reduces the overestimation to only 2.65%, while its running time is less than 1/150 that of the CCCG-based approach on average.

Multicore-Aware Code Co-Positioning to Reduce WCET on Dual-Core Processors with Shared Instruction Caches

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.12-25
    • /
    • 2012
  • For real-time systems it is important to obtain the accurate worst-case execution time (WCET). Furthermore, how to improve the WCET of applications that run on multicore processors is both significant and challenging as the WCET can be largely affected by the possible inter-core interferences in shared resources such as the shared L2 cache. In order to solve this problem, we propose an innovative approach that adopts a code positioning method to reduce the inter-core L2 cache interferences between the different real-time threads that adaptively run in a multi-core processor by using different strategies. The worst-case-oriented strategy is designed to decrease the worst-case WCET among these threads to as low as possible. The other two strategies aim at reducing the WCET of each thread to almost equal percentage or amount. Our experiments indicate that the proposed multicore-aware code positioning approaches, not only improve the worst-case performance of the real-time threads but also make good tradeoffs between efficiency and fairness for threads that run on multicore platforms.

An Interference Matrix Based Approach to Bounding Worst-Case Inter-Thread Cache Interferences and WCET for Multi-Core Processors

  • Yan, Jun;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.131-140
    • /
    • 2011
  • Different cores typically share the last-level cache in a multi-core processor. Threads running on different cores may interfere with each other. Therefore, the multi-core worst-case execution time (WCET) analyzer must be able to safely and accurately estimate the worst-case inter-thread cache interference. This is not supported by current WCET analysis techniques that manly focus on single thread analysis. This paper presents a novel approach to analyze the worst-case cache interference and bounding the WCET for threads running on multi-core processors with shared L2 instruction caches. We propose to use an interference matrix to model inter-thread interference, on which basis we can calculate the worst-case inter-thread cache interference. Our experiments indicate that the proposed approach can give a worst-case bound less than 1%, as in benchmark fib-call, and an average 16.4% overestimate for threads running on a dual-core processor with shared-L2 cache. Our approach dramatically improves the accuracy of WCET overestimatation by on average 20.0% compared to work.

Timing Analysis for Satellite Flight Software (인공위성 소프트웨어 타이밍 분석)

  • 이종인;최종욱;이재승;강수연
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.367-369
    • /
    • 2003
  • 인공위성 탑재 소프트웨어는 정해진 시간 내에 필요한 작업을 수행하여야 하는 실시간 내장형 소프트웨어로 타이밍 분석이 중요하다. 기존의 인공위성소프트웨어 개발 시 적용되는 타이밍 분석기법은 개발자의 수작업에 의존하여 많은 시간과 노력이 요구되며 정확성에 문제가 있을 수 있는 단점이 있었다. 본 논문에서는 위성소프트에어의 타이밍 분석에 적용 가능한 최장 실행시간 (Worst Case Execution Time, WCET) 기법을 조사하고 보다 정확한 (tight) WCET를 구하기 위해 입력 데이터를 고려한 WCET 분석 방안을 제안한다.

  • PDF

Exploiting Static Non-Uniform Cache Architectures for Hard Real-Time Computing

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.4
    • /
    • pp.177-189
    • /
    • 2015
  • High-performance processors using Non-Uniform Cache Architecture (NUCA) are increasingly used to deal with the growing wire delays in multicore/manycore processors. Due to the convergence of high-performance computing with embedded computing, NUCA caches are expected to benefit high-end embedded systems as well. However, for real-time systems that use multicore processors with NUCA caches, it is crucial to bound worst-case execution time (WCET) accurately and safely. In this paper, we developed a WCET analysis approach by considering the effect of static NUCA caches on WCET. We compared the WCET in real-time applications with different topologies of static NUCA caches. Our experimental results demonstrated that the static NUCA cache could improve the worst-case performance of realtime applications using multicore processor compared to the cache with uniform access time.

Static Worst-Case Execution Time Analysis Tool for Scheduling Primitives about Embedded OS (임베디드 운영체제의 스케줄링 프리미티브를 고려한 정적 최악실행시간 분석도구)

  • Park, Hyeon-Hui;Yang, Seung-Min;Choi, Yong-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.5
    • /
    • pp.271-281
    • /
    • 2007
  • Real-time support of embedded OS is not optional, but essential in contemporary embedded systems. In order to achieve these system#s real-time property, it is crucial that schedulability analysis for tasks having its property have been accomplished before system execution. Acquiring Worst-Case Execution Time(WCET) of task is a core part of schedulability analysis. Because traditional WCET tools analyze only its estimation of application task(i.e. program), it is not considered that application tasks are affected by scheduling primitives(e.g. scheduler, interrupt service routine, etc.) of OS when it schedules them. In this paper, we design and implement WCET analysis tool which deliberates on scheduling primitives of system using embedded Linux widely used in embedded OSes. This tool can estimate either WCET of normal application programs or corresponding primitives which have an influence on schduling property in embedded Linux kernel. Therefore, precision of estimation about schedulability analysis is improved. We develop this tool as Eclipse#s plug-in to work properly in any platform and support convenient interface or functionality for user.

Time bounder : WCET Analysis tool (Time bounder : WCET 분석 도구)

  • 박수현;방호정;김태효;차성덕;이종인
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.340-342
    • /
    • 2004
  • 인공위성과 원자력발전소와 같은 안전필수시스템의 경우, 각 작업이 주기 안에 완료되어야 하는 실시간적 특성을 가진다. 시스템이 이와 같은 요구사항을 만족하는가를 판단하기 위해서는 프로그램의 최장수행시간을 분석하는 것이 필수적이다 본 논문에서는 프로그램을 직접 실행하지 않고 최장수행시간을 분석하기 위해 구현한 Time bounder 도구를 소개하며, 다목적실용위성 2호에 탑재되는 프로그램을 대상으로 수행한 실험 결과를 분석한다.

  • PDF

Holistic Scheduling Analysis of a CAN based Body Network System (CAN을 이용한 차체 네트웍 시스템에 대한 Holistic 스케줄링 해석)

  • 신민석;이우택;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.114-120
    • /
    • 2002
  • In a distributed real-time control system, it is essential to confirm the timing behavior of all tasks because these tasks of each real-time controller have to finish their processes within the specified time intervals called a deadline. In order to satisfy this objective, the timing analysis of a distributed real-time system such as shcedulability test must be performed during the system design phase. In this study, a simple application of CAN fur a vehicle body network system is formulated to apply to a holistic scheduling analysis, and the worst-case execution time (WCET) and the worst-case end-to-end response time (WCRT) are evaluated in the point of holistic system view.

Bounding Worst-Case Data Cache Performance by Using Stack Distance

  • Liu, Yu;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.4
    • /
    • pp.195-215
    • /
    • 2009
  • Worst-case execution time (WCET) analysis is critical for hard real-time systems to ensure that different tasks can meet their respective deadlines. While significant progress has been made for WCET analysis of instruction caches, the data cache timing analysis, especially for set-associative data caches, is rather limited. This paper proposes an approach to safely and tightly bounding data cache performance by computing the worst-case stack distance of data cache accesses. Our approach can not only be applied to direct-mapped caches, but also be used for set-associative or even fully-associative caches without increasing the complexity of analysis. Moreover, the proposed approach can statically categorize worst-case data cache misses into cold, conflict, and capacity misses, which can provide useful insights for designers to enhance the worst-case data cache performance. Our evaluation shows that the proposed data cache timing analysis technique can safely and accurately estimate the worst-case data cache performance, and the overestimation as compared to the observed worst-case data cache misses is within 1% on average.