• 제목/요약/키워드: WCET

검색결과 39건 처리시간 0.03초

실행 유휴 시간 분배 정책에 따른 실시간 전력 관리 스케줄링 기법의 성능 평가 (Performance Evaluation of Real-Time Power-Aware Scheduling Techniques Incorporating Idle Time Distribution Policies)

  • 탁성우
    • 한국정보통신학회논문지
    • /
    • 제18권7호
    • /
    • pp.1704-1712
    • /
    • 2014
  • 실시간 태스크의 스케줄링 가능성 검사를 위해 미리 설정된 태스크의 최악 실행 시간보다 태스크의 실제 실행 시간이 짧은 경우, 최악 실행 시간에서 남은 실행 유휴 시간이 발생한다. 발생된 실행 유휴 시간은 실시간 전력 관리 스케줄링 기법을 통해 배터리 기반 센서 노드의 전력 소비 감소에 활용될 수 있다. 이에 본 논문에서는 발생된 남은 최악 실행 유휴 시간을 분배하여 실시간 전력 관리 스케줄링 기법에서 활용할 수 있도록 세 가지 분배 정책을 제안하였다. 제안한 분배 정책은 보수적, 중도적, 그리고 공격적 실행 유휴 시간 분배 정책으로 각각 구분하였다. 그리고 분배 정책 유형에 따른 실시간 전력 관리 스케줄링 기법의 성능 평가는 전력 소비 측면에서 비교 분석하였다.

Multicore-Aware Code Co-Positioning to Reduce WCET on Dual-Core Processors with Shared Instruction Caches

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • 제6권1호
    • /
    • pp.12-25
    • /
    • 2012
  • For real-time systems it is important to obtain the accurate worst-case execution time (WCET). Furthermore, how to improve the WCET of applications that run on multicore processors is both significant and challenging as the WCET can be largely affected by the possible inter-core interferences in shared resources such as the shared L2 cache. In order to solve this problem, we propose an innovative approach that adopts a code positioning method to reduce the inter-core L2 cache interferences between the different real-time threads that adaptively run in a multi-core processor by using different strategies. The worst-case-oriented strategy is designed to decrease the worst-case WCET among these threads to as low as possible. The other two strategies aim at reducing the WCET of each thread to almost equal percentage or amount. Our experiments indicate that the proposed multicore-aware code positioning approaches, not only improve the worst-case performance of the real-time threads but also make good tradeoffs between efficiency and fairness for threads that run on multicore platforms.

XScale 프로세서 기반의 임베디드 소프트웨어를 위한 최악실행시간 분석도구의 구현 (Implementation of Worst Case Execution Time Analysis Tool For Embedded Software based on XScale Processor)

  • 박현희;최명수;양승민;최용훈;임형택
    • 정보처리학회논문지A
    • /
    • 제12A권5호
    • /
    • pp.365-374
    • /
    • 2005
  • 신뢰성 있는 내장 실시간 시스템을 구축하기 위해서는 프로그램의 스케줄링 가능성 여부를 검증해야 한다 스케줄링 가능성 분석을 위해서 는 프로그램의 최악실행시간 정보가 필수적인 요소이다. 최악실행시간 분석은 두 단계로 나된다. 첫 번째 단계에서는 프로그램 언어 구문상의 흐름을 분석하고, 두 번째 단계에서는 수행되는 흐름 경로상의 하드웨어적인 요소를 고려하여 수행시간을 분석한다. 본 논문에서는 XScale 프로세서를 대상으로 하는 최악실행시간 통합 분석 도구인 WATER(WCET Analysis Tool for Embedded Real-time system)를 설계하고 구현한다. 상위 수준의 흐름 분석기와 하위 수준의 실행시간 분석기로 이루어진 WATER의 구조를 소개하고 소프트웨어의 실제 측정과 WATER의 분석 결과를 비교한다.

An Interference Matrix Based Approach to Bounding Worst-Case Inter-Thread Cache Interferences and WCET for Multi-Core Processors

  • Yan, Jun;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • 제5권2호
    • /
    • pp.131-140
    • /
    • 2011
  • Different cores typically share the last-level cache in a multi-core processor. Threads running on different cores may interfere with each other. Therefore, the multi-core worst-case execution time (WCET) analyzer must be able to safely and accurately estimate the worst-case inter-thread cache interference. This is not supported by current WCET analysis techniques that manly focus on single thread analysis. This paper presents a novel approach to analyze the worst-case cache interference and bounding the WCET for threads running on multi-core processors with shared L2 instruction caches. We propose to use an interference matrix to model inter-thread interference, on which basis we can calculate the worst-case inter-thread cache interference. Our experiments indicate that the proposed approach can give a worst-case bound less than 1%, as in benchmark fib-call, and an average 16.4% overestimate for threads running on a dual-core processor with shared-L2 cache. Our approach dramatically improves the accuracy of WCET overestimatation by on average 20.0% compared to work.

인공위성 소프트웨어 타이밍 분석 (Timing Analysis for Satellite Flight Software)

  • 이종인;최종욱;이재승;강수연
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.367-369
    • /
    • 2003
  • 인공위성 탑재 소프트웨어는 정해진 시간 내에 필요한 작업을 수행하여야 하는 실시간 내장형 소프트웨어로 타이밍 분석이 중요하다. 기존의 인공위성소프트웨어 개발 시 적용되는 타이밍 분석기법은 개발자의 수작업에 의존하여 많은 시간과 노력이 요구되며 정확성에 문제가 있을 수 있는 단점이 있었다. 본 논문에서는 위성소프트에어의 타이밍 분석에 적용 가능한 최장 실행시간 (Worst Case Execution Time, WCET) 기법을 조사하고 보다 정확한 (tight) WCET를 구하기 위해 입력 데이터를 고려한 WCET 분석 방안을 제안한다.

  • PDF

Exploiting Static Non-Uniform Cache Architectures for Hard Real-Time Computing

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • 제9권4호
    • /
    • pp.177-189
    • /
    • 2015
  • High-performance processors using Non-Uniform Cache Architecture (NUCA) are increasingly used to deal with the growing wire delays in multicore/manycore processors. Due to the convergence of high-performance computing with embedded computing, NUCA caches are expected to benefit high-end embedded systems as well. However, for real-time systems that use multicore processors with NUCA caches, it is crucial to bound worst-case execution time (WCET) accurately and safely. In this paper, we developed a WCET analysis approach by considering the effect of static NUCA caches on WCET. We compared the WCET in real-time applications with different topologies of static NUCA caches. Our experimental results demonstrated that the static NUCA cache could improve the worst-case performance of realtime applications using multicore processor compared to the cache with uniform access time.

Counter-Based Approaches for Efficient WCET Analysis of Multicore Processors with Shared Caches

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • 제7권4호
    • /
    • pp.285-299
    • /
    • 2013
  • To enable hard real-time systems to take advantage of multicore processors, it is crucial to obtain the worst-case execution time (WCET) for programs running on multicore processors. However, this is challenging and complicated due to the inter-thread interferences from the shared resources in a multicore processor. Recent research used the combined cache conflict graph (CCCG) to model and compute the worst-case inter-thread interferences on a shared L2 cache in a multicore processor, which is called the CCCG-based approach in this paper. Although it can compute the WCET safely and accurately, its computational complexity is exponential and prohibitive for a large number of cores. In this paper, we propose three counter-based approaches to significantly reduce the complexity of the multicore WCET analysis, while achieving absolute safety with tightness close to the CCCG-based approach. The basic counter-based approach simply counts the worst-case number of cache line blocks mapped to a cache set of a shared L2 cache from all the concurrent threads, and compares it with the associativity of the cache set to compute the worst-case cache behavior. The enhanced counter-based approach uses techniques to enhance the accuracy of calculating the counters. The hybrid counter-based approach combines the enhanced counter-based approach and the CCCG-based approach to further improve the tightness of analysis without significantly increasing the complexity. Our experiments on a 4-core processor indicate that the enhanced counter-based approach overestimates the WCET by 14% on average compared to the CCCG-based approach, while its averaged running time is less than 1/380 that of the CCCG-based approach. The hybrid approach reduces the overestimation to only 2.65%, while its running time is less than 1/150 that of the CCCG-based approach on average.

Bounding Worst-Case DRAM Performance on Multicore Processors

  • Ding, Yiqiang;Wu, Lan;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • 제7권1호
    • /
    • pp.53-66
    • /
    • 2013
  • Bounding the worst-case DRAM performance for a real-time application is a challenging problem that is critical for computing worst-case execution time (WCET), especially for multicore processors, where the DRAM memory is usually shared by all of the cores. Typically, DRAM commands from consecutive DRAM accesses can be pipelined on DRAM devices according to the spatial locality of the data fetched by them. By considering the effect of DRAM command pipelining, we propose a basic approach to bounding the worst-case DRAM performance. An enhanced approach is proposed to reduce the overestimation from the invalid DRAM access sequences by checking the timing order of the co-running applications on a dual-core processor. Compared with the conservative approach, which assumes that no DRAM command pipelining exists, our experimental results show that the basic approach can bound the WCET more tightly, by 15.73% on average. The experimental results also indicate that the enhanced approach can further improve the tightness of WCET by 4.23% on average as compared to the basic approach.

Multicore Real-Time Scheduling to Reduce Inter-Thread Cache Interferences

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • 제7권1호
    • /
    • pp.67-80
    • /
    • 2013
  • The worst-case execution time (WCET) of each real-time task in multicore processors with shared caches can be significantly affected by inter-thread cache interferences. The worst-case inter-thread cache interferences are dependent on how tasks are scheduled to run on different cores. Therefore, there is a circular dependence between real-time task scheduling, the worst-case inter-thread cache interferences, and WCET in multicore processors, which is not the case for single-core processors. To address this challenging problem, we present an offline real-time scheduling approach for multicore processors by considering the worst-case inter-thread interferences on shared L2 caches. Our scheduling approach uses a greedy heuristic to generate safe schedules while minimizing the worst-case inter-thread shared L2 cache interferences and WCET. The experimental results demonstrate that the proposed approach can reduce the utilization of the resulting schedule by about 12% on average compared to the cyclic multicore scheduling approaches in our theoretical model. Our evaluation indicates that the enhanced scheduling approach is more likely to generate feasible and safe schedules with stricter timing constraints in multicore real-time systems.

고신뢰 실시간 시스템을 위한 체크포인팅 프레임워크 (A Checkpointing Framework for Dependable Real-Time Systems)

  • 이효순;신현식
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제29권4호
    • /
    • pp.176-184
    • /
    • 2002
  • 본 논문은 고신뢰 실시간 시스템에 체크포인팅을 적용할 수 있도록 실시간성과 신뢰성을 모두 고려하는 체크포인팅 프레임워크를 제공한다. 실시간 태스크의 시간 예측성은 할당된 체크포인트의 수와 태스크가 실행 중에 감내 해야하는 고장의 수를 기반으로 태스크의 최악 실행 시간(WCET: Worst Case Execution Time)을 산출함으로써 보장된다. 태스크가 실행 중에 극복해야하는 고장의 수는 태스크의 신뢰성 요구조건을 기반으로 산출됨으로써 태스크의 신뢰성이 보장되도록 한다. 이렇게 얻어진 태스크들의 WCET와 태스크가 극복해야 하는 고장의 수를 이용하여, 각 태스크의 스케줄 가능성을 보장하기 위해 요구되는 최소의 체크포인트 수를 유도하는 알고리즘을 제안한다. 본 논문에서 제안하는 프레임워크는 체크포인팅의 시간 중복량을 기반으로 하므로, 다른 시간 중복 기법에 대해서도 확장이 용이하다.