• Title/Summary/Keyword: WCA

Search Result 48, Processing Time 0.025 seconds

Graphene oxide dispersed polyvinyl chloride/alkyd green nanocomposite film: Processing and physico-mechanical properties

  • Yadav, Mithilesh;Ahmad, Sharif;Chiu, Fang-Chyou
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.246-256
    • /
    • 2018
  • Graphene oxide (GO) reinforced Polyvinyl chloride (PVC)-Waterborne Castor Alkyd (WCA) nanocomposites (PVC/WCA/GO) films were processed through solution blending technique. TGA showed that the thermal stability of PVC/WCA/GO-0.5 films was better than that of PVC/WCA blend film. With incorporation of 0.5 wt.% GO, the tensile strength and elastic modulus of the blend nanocomposite have significantly improved by about 260% and 185%, respectively, compared with neat polymer. The physicomechanical properties of these films suggest that the PVC/WCA/GO nanocomposite films may have a potential scope for their application in packaging industries. The results are supported by characterizations like FTIR, XRD, TEM and FESEM.

Optimized ANNs for predicting compressive strength of high-performance concrete

  • Moayedi, Hossein;Eghtesad, Amirali;Khajehzadeh, Mohammad;Keawsawasvong, Suraparb;Al-Amidi, Mohammed M.;Van, Bao Le
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.867-882
    • /
    • 2022
  • Predicting the compressive strength of concrete (CSoC) is of high significance in civil engineering. The CSoC is a highly dependent and non-linear parameter that requires powerful models for its simulation. In this work, two novel optimization techniques, namely evaporation rate-based water cycle algorithm (ER-WCA) and equilibrium optimizer (EO) are employed for optimally finding the parameters of a multi-layer perceptron (MLP) neural processor. The efficiency of these techniques is examined by comparing the results of the ensembles to a conventionally trained MLP. It was observed that the ER-WCA and EO optimizers can enhance the training accuracy of the MLP by 11.18 and 3.12% (in terms of reducing the root mean square error), respectively. Also, the correlation of the testing results climbed from 78.80% to 82.59 and 80.71%. From there, it can be deduced that both ER-WCA-MLP and EO-MLP can be promising alternatives to the traditional approaches. Moreover, although the ER-WCA enjoys a larger accuracy, the EO was more efficient in terms of complexity, and consequently, time-effectiveness.

Introduction and Application of Worst Case Analysis in Space Environment (우주 환경에서의 Worst Case Analysis에 대한 소개와 응용 예)

  • Lee, Yun-Ki;Kwon, Ki-Ho;Kim, Day-Young;Lee, Sang-Kon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.58-66
    • /
    • 2008
  • In the space environment, many other things to design electronic circuits should be considered with respect to commercial circuit design. The first thing is that electronics in space are likely to be exposed to radiation effects and the second thing is that it is impossible to repair or replace electronic parts after once spacecraft was launched. In this severe situation, very strict and tight worst case analysis conditions should be applied to the electronics in space environment to do its own function well without any problems during the overall mission period. So this paper summarizes worst case input conditions and methods which are specified in the ESA Worst Case Analysis Specification (ECSS-Q-30-01A) and proposes the results of Worst Case Analysis for one simple electronic circuit which is implemented at a real On-Board Computer in the Low Earth Orbit Satellite.

  • PDF

High-resolution Urban Flood Modeling using Cellular Automata-based WCA2D in the Oncheon-cheon Catchment in Busan, South Korea (셀룰러 오토마타 기반 WCA2D 모형을 이용한 부산 온천천 유역 고해상도 도시 침수 해석)

  • Choi, Hyeonjin;Lee, Songhee;Woo, Hyuna;Noh, Seong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.587-599
    • /
    • 2023
  • As climate change increasesthe frequency and risk of flooding in major cities around theworld, the importance ofsimulation technology that can quickly and accurately analyze high-resolution 2D flooding information in large-scale areasis emerging. The physically-based approaches based on the Shallow Water Equations (SWE) often requires huge computer resources hindering high-resolution flood prediction. This study investigated the theoretical background of Weighted Cellular Automata 2D (WCA2D), which simulates spatio-temporal changes offlooding using transition rules and weight-based system, and assessed feasibility to simulate pluvial flooding in the urbancatchment, theOncheon-cheon catchmentinBusan, SouthKorea.Inaddition,the computation performancewas compared by applying versions using OpenComputing Language (OpenCL) andOpenMulti-Processing (OpenMP) parallel computing techniques. Simulationresultsshowed that the maximuminundation depthmap by theWCA2Dmodel cansimilarly reproduce historical inundation maps. Also, it can precisely simulate spatio-temporal changes of flooding extent in the urban catchment with complex topographic characteristics. For computation efficiency, parallel computing schemes, theOpenCLandOpenMP, improved the computation by about 8~14 and 5~6 folds respectively, compared to the sequential computation.

Hydrophobic Characteristics of a Silicone Resin Surface Produced by Replicating an Electric Discharge Machined Surface (방전가공면을 복제한 실리콘수지 표면의 발수특성연구)

  • Kim, Y.H.;Hong, S.K.;Lee, S.Y.;Lee, S.H.;Kim, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • In this study, a micro/nano-random-pattern-structure surface was machined by electric discharge machining (EDM) followed by replicating the EDM surface with a silicone elastomer having low energy and greater hydrophobicity. The variation of hydrophobicity was of prime interest and was examined as a function of the surface roughness of the replicated silicone elastomer. The hydrophobicity was evaluated by the water contact angle (WCA) measured on the relevant surface. For the experiments, the original surfaces were machined by die sinking electric discharge machining (DS-EDM) and wire cutting electric discharge machining (WC-EDM). The ranges of surface roughness were Ra $0.8{\sim}19{\mu}m$ for the DS-EDM and Ra $0.5{\sim}4.7{\mu}m$ for the WC-EDM. In order to fabricate a hydrophobic surface, the EDM surfaces were directly replicated using a liquid-state silicone elastomer, which was thermally cured. The measured WCA on the replicated surfaces for DS-EDM was in the range of $115{\sim}130^{\circ}$ and for WC-EDM the WCA was in the range of $123{\sim}150^{\circ}$. Additionally, the dynamic hydrophobicity was evaluated by measuring an advancing and a receding WCA on the replicated silicone elastomer surfaces.

Geometric Multiple Watermarking Scheme for Mobile 3D Content Based on Anonymous Buyer-Seller Watermarking Protocol (익명 Buyer-Seller 워터마킹 프로토콜 기반 모바일 3D 콘텐츠의 기하학적 다중 워터마킹 기법)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.244-256
    • /
    • 2009
  • This paper presents multiple watermarking method for the copyright protection and the prevention of illegal copying of mobile 3D contents. The proposed method embeds an unique watermark and a WCA watermark into the spatial and encryption domains of mobile 3D content based on anonymous Buyer-Seller watermarking protocol. The seller generates an unique watermark and embeds it into the distribution of vertex data of 3D content object. After receiving the encrypted watermark from WCA, the seller embeds it into the encrypted vertex data by using operator that satisfies the privacy homo morphic property. The proposed method was implemented using a mobile content tool, Power VR MBX and experimental results verified that the proposed method was capable of copyright protection and preventing illegal copying, as the watermarks were also accurately extracted in the case of geometrical attacks, such as noise addition, data accuracy variation, and data up/down scaling.

  • PDF

Application of Ultra Rapid Coagulation for Securing Water Resource II: Study of organic, metals, and nutrients removal (수자원 확보를 위한 URC공법의 적용 I: 유기물, 중금속, 영양염의 제거특성에 관한 연구)

  • Park, Se Jin;Yoon, Tai Il;Kim, Jae Hyung;Cho, Kyung Chul
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.27-38
    • /
    • 2000
  • A physicochemical process called Ultra Rapid Coagulation(URC) can dramatically remove organics, metals, and phosphates in wastewater by adding weighted coagulation additive(WCA) and recycling sludge into the coagulation basin to increase the growth rate and adsorption ability of floc. Also this process can improve floc settling rate than conventional coagulation process and reduce the pollutants loaded into the receiving water for securing water source. It was evaluated that WCA and sludge added have effects on the removal efficiency and estimated the possibilities of reusing the effluent from this process.

  • PDF

EFFECT OF THE WATER-WALL INTERACTION POTENTIALS ON THE PROPERTIES OF AQUEOUS SOLUTIONS CONFINED WITHIN A UNIFORMLY CHARGED NANO-CHANNEL

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.368-376
    • /
    • 2009
  • Studies on the effect of the wall-ion, wall-water, water-ion and ion-ion interaction on properties of water and ions in nano-channels have been performed through the use of different kinds of ions or different models of potential energy between wall-ion or wall-water. On this paper, we address the effect of water-wall interaction potential on the properties of confined aqueous solution by using the molecular dynamics (MD) simulations. As the interaction potential energies between water and wall we employed the models of the Weeks-Chandler-Andersen (WCA) and Lennard-Jones (LJ). On the MD simulations, 680 water molecules and 20 ions are included between uniformly charged plates that are separated by 2.6 nm. The water molecules are modeled by using the rigid SPC/E model (simple point charge/Extended) and the ions by the charged Lennard-Jones particle model. We compared the results obtained by using WCA potential with those by LJ potential. We also compared the results (e.g. ion density and electro-static potential distributions) in each of the above cases with those provided by solving the Poisson-Boltzmann equation.

  • PDF

Analyzing Friction Coefficient and Wettability of Micro-Dimple Fabricated Using Elliptical Vibration Texturing Method (이중 주파수 타원형 진동 궤적법 기반 마이크로 딤플의 마찰계수 및 습윤성 분석)

  • Park, Gun Chul;Ko, Tae Jo;Kurniawan, Rendi;Ali, Saood
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2020
  • Surface texturing of micro-dimples has been used in many manufacturing industries to reduce friction between two sliding contacted surfaces. Surface texturing decreases the frictional force owing to minimizing of the sliding contact area. In this paper, micro-dimples have been fabricated on an Al6061-T6 surface using a two-frequency elliptical vibration texturing (TFEVT) method. A high-frequency of 18 kHz and low-frequency of 250 Hz were applied to an elliptically-vibrated tool holder. The Stribeck curve was plotted to analyze the friction coefficient trends. Furthermore, the representative wetting index, such as the water contact angle (WCA), was measured by considering the friction coefficient. WCA is associated with micro-dimple density and associated parameters. Consequently, the dimpled surfaces with a low friction coefficient exhibited a relatively high WCA in the feed direction. According to the Stribeck curve, the dimpled surfaces demonstrate superior friction performance for mixed-film lubrication compared to the non-textured surface.

Metaheuristic-designed systems for simultaneous simulation of thermal loads of building

  • Lin, Chang;Wang, Junsong
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.677-691
    • /
    • 2022
  • Water cycle algorithm (WCA) has been a very effective optimization technique for complex engineering problems. This study employs the WCA for simultaneous prediction of heating load (LH) and cooling load (LC) in residential buildings. This algorithm is responsible for optimally tuning a neural network (NN). Utilizing 614 records, the behavior of the LH and LC is explored and the captured knowledge is then used to predict for 154 unanalyzed building conditions. Since the WCA is a population-based algorithm, different numbers of the searching agents were tested to find the most optimum configuration. It was observed that the best solution is discovered by 500 agents. A comparison with five newly-developed benchmark optimizers, namely equilibrium optimizer (EO), multi-tracker optimization algorithm (MTOA), slime mould algorithm (SMA), multi-verse optimizer (MVO), and electromagnetic field optimization (EFO) revealed that the WCANN predicts the desired parameters with considerably larger accuracy. Obtained root mean square errors (1.4866, 2.1296, 2.8279, 2.5727, 2.5337, and 2.3029 for the LH and 2.1767, 2.6459, 3.1821, 2.9732, 2.9616, and 2.6890 for the LC) indicated that the most reliable prediction was presented by the proposed model. The EFONN, however, provided a more time-effective solution. Lastly, an explicit predictive formula was elicited from the WCANN.