• Title/Summary/Keyword: WC-Co alloy

Search Result 53, Processing Time 0.03 seconds

Microstructure Features of Large Grains in WC-Co Alloys

  • Delanoe, A.;Lay, S.;Missiaen, J.M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.650-651
    • /
    • 2006
  • This paper presents a study of large grains by transmission electron microscopy in two WC-Co alloys, one W rich and one C rich. In the W rich alloy, some large grains are found in contact with the $\eta$ phase. The C content influences the morphology of large grains: they are flatter in the C rich alloy with smoother interfaces. Whatever the C content, they contain few dislocations compared to matrix grains except often in a small area. Small WC grains are often found inside the large grains. They have likely been engulfed during the growth of the large grains owing to the low boundary energy.

  • PDF

Microstructure and wear performance of WC-6.5%Co cladding layer by electric resistance welding (저항 클래딩법에 의해 형성된 내마모성 WC-6.5Co 클래딩층의 미크로조직 및 내마모성능)

  • Lee, Jin-U;Bae, Myeong-Il;Kim, Sang-Jin;Lee, Yeong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.120-122
    • /
    • 2006
  • This study deals with characterizations of microstructure and wear performance of a cladding layer, product on 1.9 mm-thick mild steel plate by the electric resistance welding, of composite metal powder of Coarse WC-6.5%Co and high carbon alloy(SHA). The cladding layer was examined and tested fur microstructural features, chemical composition, hardness, wear performance and wear mechanism. The cladding layer have two different matrix were observed by an optical microscope and EPMA. The one was the coarse WC-6.5Co structure. The other was the melted SHA with surrounding the WC-6.5Co structure. The hardness of WC-6.5Co was 1210HV. The hardness of SHA was 640HV. In comparison by wear rate, the cladding layer showed the remarkable wear performance that was 15 times of SM490 and about 62% of D2.

  • PDF

Characterization of Microstructure of WC-6.5%Co Cladding Layer by Electric Resistance Welding (저항클래딩법을 응용하여 형성된 내마모성 WC-6.5Co 클래딩층의 미크로조직 특성)

  • Lee, Jin-Woo;Ko, Jun-Bin;Lee, Young-Ho
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.72-77
    • /
    • 2007
  • This study deals with characterizations of microstructure and wear performance of a cladding layer, product on 1.9 mm-thick mild steel plate by the electric resistance welding, of composite metal powder of Coarse WC-6.5%Co and high carbon alloy (SHA). The cladding layer was examined and tested for microstructural features, chemical composition, hardness, and bondability. The cladding layer have two different matrix were observed by an optical microscope and EPMA. The one was the coarse WC-6.5Co structure. The other was the melted SHA with surrounding the WC-6.5Co structure. The hardness of WC-6.5Co was 1210HV. The hardness of SHA was 640HV.

Comparison of Shear Bond Strength of Ceramic Fused to Ni-Cr and Co-Cr Alloy by Heat Treatment (도재용착용 Ni-Cr 합금과 Co-Cr 합금의 열처리에 따른 전단결합강도 비교)

  • Ahn, Jae-Seok;Ko, Eun-Kyung;Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.33 no.3
    • /
    • pp.185-192
    • /
    • 2011
  • Purpose: This study was to evaluate the shear bond strength of the ceramic fused to Ni-Cr alloy(Bellabond plus) and Co-Cr alloy(Wirobond C) by heat treatment. Methods: Metal specimens were divided into 5 groups for each alloy according to heat treatment conditions prior to porcelain application. Fifteen specimens from each group were subjected to a shear load a universal testing machine using a 0.1mm/min cross-head speed and one specimen from each group was observed with EDX line profile. Results: The diffusion of metal oxide observed far in the specimen heat treated than no heat treated in the opaque layer. The shear bond strength measured highest to BP3(50.50MPa), WC2(50.49MPa) groups and measured lowest from BP1(35.1MPaa), WC1(39.66MPa) groups which were not treated with heat, and there was a significant difference (p<0.05). Conclusion: The shear bond strength of Ni-Cr alloy(Bellabond plus) and Co-Cr alloy(Wirobond C) measured similar 5 groups all.

Fabrication of Nanostructured WC/Co Alloy by Chemical Processes

  • Kim, Byoung-Kee;Ha, Gook-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.346-347
    • /
    • 2006
  • New manufacturing processes, such as thermochemical, mechanochemical and chemical vapor condensation processes have been developed to obtain nanostructured WC/Co materials. Nanoscale size WC/Co composite powders of near 100-150nm can be synthesizes by thermochemical and mechanochemical processes using water soluble precursors. Non-agglomerated and nano sized WC powder can be synthesized by the chemical vapor condensation process using metallorganic precursors as starting materials. In this paper, the scientific and technical issues on synthesis and consolidation of nanostructured WC/Co alloys produced by new chemical processes are introduced.

  • PDF

The Growth Behavior of Surface Grains of WC-6%Co Alloy during Heat Treatment (WC-Co 소결체의 열처리시 나타나는 표면 입자 성장의 거동에 관한 연구)

  • 여수형;이욱성;백영준;채기웅;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.28-33
    • /
    • 2001
  • WC-6%Co 소결체를 열처리할 때 발생하는, 시편 표면에서의 급격한 입자 성장 거동을 열처리 분위기를 변수로 하여 관찰하였다. 열처리 분위기로 수소와 메탄을 각각 사용하였고, 온도는 1400~145$0^{\circ}C$, 압력은 1~3 Torr, 그리고 시간은 100분까지 변화시켰다. 표면에서의 입자 성장은 수소 분위기보다 메탄 분위기를 사용하는 경우 훨씬 빠르게 일어났다. 그리고 열처리 온도가 증가할수록, 압력이 감소할수록 입자 성장 속도가 증가하였다. 이때 성장한 입자의 크기 분포는 비정규 분포를 보였다. 한편, 입자 성장은 열처리시 증발하는 시편의 Co 무게 감소와 밀접한 관계를 보였다. 이러한 표면에서의 입자 성장 현상을 열처리한 조건과 관련되어 WC-Co 상태도에서 예측할 수 있는, 탈탄-탄화 반응 및 비정상 입자 성장 현상 관점으로 설명하였다.

  • PDF

Mechanical Characteristic Evaluation of Proper Material for Ultra-fine Dies (초소형 금형소재의 기계적 특성평가)

  • KANG Jae-hoon;LEE Hyun-yong;LEE Nak-kyu
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.473-476
    • /
    • 2005
  • Today's manufacturing industry is facing challenges from advanced difficult-to-machine materials (WC-Co alloys, ceramics, and composites), stringent design requirements (high precision, complex shapes, and high surface quality), and machining costs. Advanced materials play an increasingly important role in modem manufacturing industries, especially, in aircraft, automobile, tool, die and mold making industries. The greatly-improved thermal, chemical, and mechanical properties of the material (such as improved strength, heat resistance, wear resistance, and corrosion resistance), while having yielded enormous economic benefits to manufacturing industries through improved product performance and product design, are making traditional machining processes unable to machine them or unable to machine them economically. In this paper, mechanical characteristic evaluation test of fine powder type WC-Co alloy was accomplished to obtain clear data for miniaturized special die parts machining with high reliability and high quality.

  • PDF

Recycling Process of WC Fine Powder Contained by Cemented Carbides Parts in JAPAN

  • Mitsuru Nakamura;Kim, Ha-Young;Hwang, Sun-Hyo
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.297-298
    • /
    • 1999
  • Cemented carbides material (WC-Co hard alloy) were recognized very important and expensive tool or die assembly parts because of compose for the main elements of rare metal (W and Co etc). This research was developed to separate and recover of WC fine powder contained by WC-Co materials. Recycling process was a new method named by the Tin impregnation for decobaltification on cemented carbides. This reaction occurred to product a brittle Co-Sn intermetallic compounds, thereafter it carried out by acid cleaning solution and physical milling or powdering. New process was able to recover about 60% WC fine powder from 1 to 5 ${\mu}{\textrm}{m}$.

  • PDF

HVOF spray coating of WC-metal powder for the improvement of friction, wear and corrosion resistance of magnetic bearing shaft material of turbo blower (터보불로워 용 회전체 주축 소재의 마찰, 마모 및 부식 저항 향상을 위한 WC-metal 분말의 초고속화염용사코팅)

  • Joo, Y.K.;Yoon, J.H.;Cho, T.Y.;Chun, H.G.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • High velocity oxy-fuel (HVOF) spray coating of WC-metal powder (powder) was carried out to improve the resistances of friction, wear and corrosion of magnetic bearing shaft material Inconel718 (In718) of turbo blower. A micron sized WC-metal powder (86.5% WC, 9.5% Co 4% Cr) was coated onto In718 surface using HVOF thermal spraying. During the spraying, the binder metals and alloy such as Co, Cr and Co-Cr alloy were molten and a small portion of WC particles were partially decomposed to $W_2C$ and free carbon at above its decomposition temperature of $1250^{\circ}C$. The free carbon and excessively sprayed oxygen formed carbon oxide gases, resulting a porous coating of porosity of $2.2{\pm}0.3%$. The surface hardness of substrate increased approximately three times from 400 Hv of In718 to $1260{\pm}30Hv$ of the coating The friction coefficients of the coating were approximately $0.33{\pm}0.03$ at $25^{\circ}C$ and $0.26{\pm}0.03$ at $450^{\circ}C$. These values were smaller than those of In718 substrate at both temperatures due to the lubrication from the free carbon and the cobalt oxide debris. The corrosion resistance of the coating was higher than that of In718 both in salt water of 3.5% NaCl and acid of 1 M HCl solutions, on the contrary, it was lower in base solution of 1 M NaOH. According to this study, the HVOF WC-metal powder coating is recommended for the durability improvement of magnetic bearing shaft of turbo blower.

Effects of W Contents in Co Matrix of the Thermal Sprayed WC-Co on the Corrosion Behavior in Molten Zinc

  • Seong, Byeong-Geun;Hwang, Sun-Young;Kim, Kyoo-Young;Lee, Kee-Ahn
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.147-153
    • /
    • 2007
  • This study sought to investigate the reaction of Co-binder containing tungsten with molten zinc. Four kinds of Co-W alloys (pure, 10%W, 20%W, 30%W) were prepared using the powder metallurgy method. The specimens were immersion-tested in molten pure zinc baths at $460^{\circ}C$. To evaluate the corrosion property in molten zinc, the weight loss of the specimen was measured after the immersion tests at different immersion times (10~300 min.). Co-10%W alloys, compared with pure cobalt, showed no effect of tungsten addition on the reaction rate in molten zinc. The relationship between the weight loss and the square root of immersion period represents a straight line in both pure cobalt and Co-10%W alloy. The Co-Zn reaction layer in Co- 1O%W alloy consists of $\gamma2$, $\gamma1$, $\gamma$ and ($\beta1$ phases. The rate of weight loss significantly increases and the weight loss behavior is not well accord with the linear relationship as the tungsten content in the Co-W alloy increases. The $\beta1$ layer was not formed on the Co-20%W alloy and neither was a stable Co-Zn intermetallic compound layer found on the Co-30%W alloy. The main cause of increase in reaction rate with increasing tungsten content is related with the instability of the Co-Zn reaction phases as seen on micro-structural analysis.