• 제목/요약/키워드: WC-Co Material

검색결과 71건 처리시간 0.03초

Effect of Manganese on the Microstructure of Cemented Carbides

  • Weidow, Jonathan;Norgren, Susanne;Elfwing, Mattias;Andren, Hans-Olof
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.348-349
    • /
    • 2006
  • The plastic deformation behavior of cemented carbides is related to the WC grain boundary strength. Ab initio calculations predict that Co and Mn segregate to WC/WC grain boundaries. To experimentally study the effect of Mn, a WC-Co-Mn material was manufactured and compared to a WC-Co material. The microstructure was studied using scanning electron microscopy (SEM), including electron backscatter diffraction (EBSD). Special attention was paid to the WC grain size and the frequency of special low-energy grain boundaries. Mn was found to have negligible effect on both the WC grain growth and the fraction of $\sum2$ WC/WC boundaries in the as-sintered material.

  • PDF

진공 소결공정에 의한 고밀도 바인더리스 및 극저바인더 초경합금의 제조 (Consolidation of Binderless and Low-Binder WC hardmetal by Vacuum Sintering)

  • 민병준;박용호;이길근;하국현
    • 한국분말재료학회지
    • /
    • 제14권5호
    • /
    • pp.315-319
    • /
    • 2007
  • Pure WC or WC with low Co concentration less than 0.5 wt.% is studied to fabricate high density WC/Co cemented carbide using vacuum sintering and post HIP process. Considering the high melting point of WC, it is difficult to consolidate it without the use of Co as binder. In this study, the effect of lower Co addition on the microstructure and mechanical properties evolution of WC/CO was investigated. By HIP process after vacuum sintering, hardness and density was sharply increased. The hardness values was $2,800kgf/mm^2$ using binderless WC.

방전플라즈마 소결 공정을 이용한 WC-Co-Mo2C 소재의 기계적 특성평가 (Mechanical Property Evaluation of WC-Co-Mo2C Hard Materials by a Spark Plasma Sintering Process)

  • 김주훈;박현국
    • 한국재료학회지
    • /
    • 제31권7호
    • /
    • pp.392-396
    • /
    • 2021
  • Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 ㎛, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.

한공정에 의한 치밀한 WC-20 vol.%Co 초경합금 제조 (One Step Synthesis of Dense WC-20 vol.% Co Super Hard Material)

  • 박충도;손인진;김환철;이영국
    • 한국분말재료학회지
    • /
    • 제8권4호
    • /
    • pp.231-238
    • /
    • 2001
  • We combined Field-Activated Combustion Synthesis(FACS) with mechanical pressure to produce dense WC-20 vol.%Co composite in one step. The hardness, the fracture toughness and the relative density of the dense WC-20 vol.%Co were investigated. Under the application of 60 MPa pressure and 3000A current on the reactants, the relative density of WC-20 vol.%Co composite was 99.4%. The fracture toughness and hardness were $9.4 MPa.m^{1/2}$ and $1672kg\textrm{mm}^2$ respectively. The fracture toughness and hardness of WC-20 vol.%Co composite produced by FAPACS were lower than that of nanostructured composite, but similar to commercial ones. Therefore we concluded that the FAPACS method which can produce WC-20 vol.%Co within several minutes in one step is superior to conventional ones.

  • PDF

One Step Synthesis and Consolidation of WC-10 vol.%Co Hard Material

  • C.D. Park;H.C. Kim;I.J. Shon
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.253-253
    • /
    • 1999
  • Dense WC-10 vol.%Co composite was simultaneously synthesized with field-activated and pressure-assisted combustion synthesis (FAPACS) within several minutes in one step from elemental powders of W, C and Co. Combustion synthesis was carried out under the combined effect of an electric field and mechanical pressure. Under the application of 60MPa pressure and 3000A current on the reactants, the relative density of WC-10 vol.%Co composite was 98.4%. The fracture toughness and hardness of WC-10 vol.%Co were 8.6 MPa·$m^{1/2}$ and 1900 kg/mm², respectively.

EFFECTS OF CO CONTENT AND WC GRAIN SIZE ON WEAR OF WC CEMENTED CARBIDE

  • Saitoh, Hiroyuki;Iwabuchi, Akira;Shimizu, Tomoharu
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.213-214
    • /
    • 2002
  • WC cemented carbide are used as many die material to improve abration resistance. Mechanical properties of the cemented carbide were influenced by Co content and WC grain size. In this study, effects of Co content and WC grain size of WC cemented carbide on wear were examied. We prepared 13 cemented carbides with different Co content and WC grain size. Wear test was carried out against S45C under dry condition at 98N and 232mm/s. From the results, we found that wear increased with both Co content and WC grain size. Specific wear rate was range $10^{-7}mm^3/Nm$.

  • PDF

고주파 플라즈마 CVD에 의한 초경합금상에 다이아몬드 박막의 합성 (Synthesis of diamond thin film on WC-Co by RF PACVO)

  • 김대일;이상희;박종관;박구범;조기선;박상현;이덕출
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.452-455
    • /
    • 2000
  • Diamond thin films were synthesized on WC-Co substrate at various experimental parameters using 13.56MHz RF PACVD(radio frequency plasma-assisted chemical vapor deposition). In order to increase the nucleation density, the WC-Co substrate was polished with 3$\mu\textrm{m}$ diamond paste. And the WC-Co substrate was pretreated in HNO$_3$: H$_2$O = 1:1 and O$_2$ plasma. In H$_2$-CH$_4$gas mixture, the crystallinity of thin film increased with decreasing CH$_4$concentration at 800W discharge power and 20torr reaction pressure. In H$_2$-CH$_4$-O$_2$gas mixture, the crystallinity of thin film increased with increasing O$_2$concentration at 800W discharge power, 20torr reaction pressure and 4% CH$_4$concentration.

  • PDF

Carbon and Cobalt Diffusion in Liquid Phase Sintering of WC-Co with Gradient Composition

  • Park, Dong-Kyu;Kim, Ki-Won;Jung, Woo-Hyun
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.635-636
    • /
    • 2006
  • In this study, the diffusion behaviors of C and Co in liquid phase sintering of WC-Co system were investigated whether these two components diffused in the same direction in case of having opposite gradient each other with not being $\eta$ phase. The green compacts with controlled compositions in not being of $\eta$ phase and gradient composition which one is WC-5Co-1.2%C, the other is WC-XCo-0.2%C (where X = 5, 10, 15, 20, 25) were sintered at $1350^{\circ}C$ and $1400^{\circ}C$ and then the diffusion behaviors of C and Co were investigated by analyses of compositional change, also determined for microstructure and microhardness. Also, same testing was carried out on the specimens with dual layers sintered in upright and reverse positions to evaluate the effect of gravity on the diffusion in liquid Co. From the results of this study, we can find the fact that the direction of diffusion for C and Co in WC-Co system during liquid phase sintering was different and the effect of gravity for the liquid was insignificant. Also other physical properties were changed on the diffusion of elements.

  • PDF

Mechanical Properties and Microstructures in WC-12%Co/Low Carbon Steel Metal Matrix Composites(MMC) Welding Overlay

  • 임희식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.50-56
    • /
    • 2003
  • Metal matrix composites(MMC) consist of metal matrix into which is distributed a second solid phase. The normal intension is to develop a material with superior mechanical properties (for example increased toughness, stiffness and wear resistance) compared to those inherent in the matrix component. In this study, WC-12%Co/low carbon steel MMC overlays have been prepared by Gas Metal Arc Welding(GMAW) according to feeding rate of WC-12%Co grit. The macro and microstructures were examined using optical microscopy (OM) and scanning electron microscopy(SEM) each other. The characteristics of hardness and wear resistance have been investigated. WC-12%Co/low carbon steel MMC overlays which have been taken good beads without porosity and cracks were manufactured by method of GMAW. Matrix of overlayed surface was seen as fish bone and faceted dendrite structures. It was known that structures were iron tungsten carbides, Fe$_{6}$W$_{6}$C which have been occurred by melting of WC-12%Co grits. After MMC had been tested by block-roll wear test it was known that WC-12%Co/low carbon steel MMC has a excellent wear resistance by exiting Fe6w6c and WC-12%Co grit. The consequence was that region of overlay with Fe$_{6}$W$_{6}$C phase has been showed a model of adhesive wear, but region of overlay with WC-12%Co grit was restrained as a result of mechanism that wear of WC-12%Co grit is not adhesive but fracture.racture.

방전플라즈마 소결 공정을 이용한 WC-Co-B4C 소재의 기계적 특성평가 (Mechanical Property Evaluation of WC-Co-B4C Hard Materials by a Spark Plasma Sintering Process)

  • 이정한;박현국
    • 한국재료학회지
    • /
    • 제31권7호
    • /
    • pp.397-402
    • /
    • 2021
  • In this study, binderless-WC, WC-6 wt%Co, WC-6wt% 1 and 2.5 B4C materials are fabricated by spark plasma sintering process (SPS process). Each fabricated WC material is almost completely dense, with a relative density up to 99.5 % after the simultaneous application of pressure of 60 MPa. The WC added Co and Co-B4C materials resulted in crystalline growth. The WC with HCP crystal structure has respective interfacial energy (basal facet direction: 1.07 ~ 1.34 J·m-2, prismatic direction: 1.43 ~ 3.02 J·m-2) that depends on the grain growth direction. It is confirmed that the continuous grain growth, biased by the basal facet, which has relatively low energy, is promoted at the WC/Co interface. As abnormal grain growth takes place, the grain size increases more than twice from 0.37 to 0.8 um. It is found through analysis that the hardness property also greatly decreases from about 2661.4 to 1721.4 kg/mm2, along with the grain growth.