• Title/Summary/Keyword: WC Alloy

Search Result 86, Processing Time 0.034 seconds

HVOF spray coating of WC-metal powder for the improvement of friction, wear and corrosion resistance of magnetic bearing shaft material of turbo blower (터보불로워 용 회전체 주축 소재의 마찰, 마모 및 부식 저항 향상을 위한 WC-metal 분말의 초고속화염용사코팅)

  • Joo, Y.K.;Yoon, J.H.;Cho, T.Y.;Chun, H.G.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • High velocity oxy-fuel (HVOF) spray coating of WC-metal powder (powder) was carried out to improve the resistances of friction, wear and corrosion of magnetic bearing shaft material Inconel718 (In718) of turbo blower. A micron sized WC-metal powder (86.5% WC, 9.5% Co 4% Cr) was coated onto In718 surface using HVOF thermal spraying. During the spraying, the binder metals and alloy such as Co, Cr and Co-Cr alloy were molten and a small portion of WC particles were partially decomposed to $W_2C$ and free carbon at above its decomposition temperature of $1250^{\circ}C$. The free carbon and excessively sprayed oxygen formed carbon oxide gases, resulting a porous coating of porosity of $2.2{\pm}0.3%$. The surface hardness of substrate increased approximately three times from 400 Hv of In718 to $1260{\pm}30Hv$ of the coating The friction coefficients of the coating were approximately $0.33{\pm}0.03$ at $25^{\circ}C$ and $0.26{\pm}0.03$ at $450^{\circ}C$. These values were smaller than those of In718 substrate at both temperatures due to the lubrication from the free carbon and the cobalt oxide debris. The corrosion resistance of the coating was higher than that of In718 both in salt water of 3.5% NaCl and acid of 1 M HCl solutions, on the contrary, it was lower in base solution of 1 M NaOH. According to this study, the HVOF WC-metal powder coating is recommended for the durability improvement of magnetic bearing shaft of turbo blower.

Microstructure and wear performance of WC-6.5%Co cladding layer by electric resistance welding (저항 클래딩법에 의해 형성된 내마모성 WC-6.5Co 클래딩층의 미크로조직 및 내마모성능)

  • Lee, Jin-U;Bae, Myeong-Il;Kim, Sang-Jin;Lee, Yeong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.120-122
    • /
    • 2006
  • This study deals with characterizations of microstructure and wear performance of a cladding layer, product on 1.9 mm-thick mild steel plate by the electric resistance welding, of composite metal powder of Coarse WC-6.5%Co and high carbon alloy(SHA). The cladding layer was examined and tested fur microstructural features, chemical composition, hardness, wear performance and wear mechanism. The cladding layer have two different matrix were observed by an optical microscope and EPMA. The one was the coarse WC-6.5Co structure. The other was the melted SHA with surrounding the WC-6.5Co structure. The hardness of WC-6.5Co was 1210HV. The hardness of SHA was 640HV. In comparison by wear rate, the cladding layer showed the remarkable wear performance that was 15 times of SM490 and about 62% of D2.

  • PDF

Characterization of Microstructure of WC-6.5%Co Cladding Layer by Electric Resistance Welding (저항클래딩법을 응용하여 형성된 내마모성 WC-6.5Co 클래딩층의 미크로조직 특성)

  • Lee, Jin-Woo;Ko, Jun-Bin;Lee, Young-Ho
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.72-77
    • /
    • 2007
  • This study deals with characterizations of microstructure and wear performance of a cladding layer, product on 1.9 mm-thick mild steel plate by the electric resistance welding, of composite metal powder of Coarse WC-6.5%Co and high carbon alloy (SHA). The cladding layer was examined and tested for microstructural features, chemical composition, hardness, and bondability. The cladding layer have two different matrix were observed by an optical microscope and EPMA. The one was the coarse WC-6.5Co structure. The other was the melted SHA with surrounding the WC-6.5Co structure. The hardness of WC-6.5Co was 1210HV. The hardness of SHA was 640HV.

Fabrication of Nanostructured WC/Co Alloy by Chemical Processes

  • Kim, Byoung-Kee;Ha, Gook-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.346-347
    • /
    • 2006
  • New manufacturing processes, such as thermochemical, mechanochemical and chemical vapor condensation processes have been developed to obtain nanostructured WC/Co materials. Nanoscale size WC/Co composite powders of near 100-150nm can be synthesizes by thermochemical and mechanochemical processes using water soluble precursors. Non-agglomerated and nano sized WC powder can be synthesized by the chemical vapor condensation process using metallorganic precursors as starting materials. In this paper, the scientific and technical issues on synthesis and consolidation of nanostructured WC/Co alloys produced by new chemical processes are introduced.

  • PDF

Effect of Variation in Particle Size of WC and Co Powder on the Properties of WC-Co Alloys (WC와 Co원료 입자크기 변화에 따른 WC-Co계 초경합금의 특성 변화)

  • Chung, Tai-Joo;Ahn, Sun-Yong;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.171-177
    • /
    • 2005
  • The effect of variation in particle size of WC and Co powder on the properties of WC-Co alloys was investigated. WC and Co powders having different particle sizes were used in the fabrication of $WC-10\;wt\%$Co composites. High hardness and low fracture toughness alloy was obtained with the decrease in WC particle size regardless of Co particle size. It was newly found in this investigation that the initial particle size of Co as well as WC had a great role in the microstructure and properties of WC-Co hard materials. The average grain size and fracture toughness of WC-Co alloys using same WC powder size increased and their hardness decreased with the use of relatively finer Co binder.

Evaluation of Cavitation Characteristics in Seawater on HVOF Spray Coated Layer with WC-27NiCr Material for Cu Alloy (구리합금에 대한 WC-27NiCr 초고속화염용사 코팅층의 해수내 캐비테이션 특성 평가)

  • Han, Min-Su;Kim, Min-Sung;Jang, Seok-Ki;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.263-269
    • /
    • 2012
  • Copper alloys are commonly applied to ship's propellers, pumps and valves which are serviced in seawater due to their good castability and corrosion resistance. In the environment of high flow velocity, however, erosion damage predominates over corrosion damage. In particular, the cavitation in seawater environment accelerates surface damage to copper alloys, resulting in degradation of products and economic losses and also threatening safety. The surface was coated with WC-27NiCr by high velocity oxygen fuel(HVOF) spraying technique to attain durability and cavitation resistance of copper alloys under high velocity/pressure flow. The cavitation test was performed for the WC-27NiCr coating deposited by HVOF in seawater at the amplitude of $30{\mu}m$ with seawater temperature. The cavitation at $15^{\circ}C$ caused exfoliation of the coating layer in 17.5 hours while that of $25^{\circ}C$ caused the exfoliation in 12.5 hours. When the temperature of seawater was elevated to $25^{\circ}C$ from $15^{\circ}C$, more damage was induced by over 160%. Although WC-27NiCr has good durability, corrosion resistance and eletrochemical stability, the cavitation damage rate of the coating layer could remarkably increase at the elevated temperatures under cavitation environments.

Recycling Process of WC Fine Powder Contained by Cemented Carbides Parts in JAPAN

  • Mitsuru Nakamura;Kim, Ha-Young;Hwang, Sun-Hyo
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.297-298
    • /
    • 1999
  • Cemented carbides material (WC-Co hard alloy) were recognized very important and expensive tool or die assembly parts because of compose for the main elements of rare metal (W and Co etc). This research was developed to separate and recover of WC fine powder contained by WC-Co materials. Recycling process was a new method named by the Tin impregnation for decobaltification on cemented carbides. This reaction occurred to product a brittle Co-Sn intermetallic compounds, thereafter it carried out by acid cleaning solution and physical milling or powdering. New process was able to recover about 60% WC fine powder from 1 to 5 ${\mu}{\textrm}{m}$.

  • PDF

The Growth Behavior of Surface Grains of WC-6%Co Alloy during Heat Treatment (WC-Co 소결체의 열처리시 나타나는 표면 입자 성장의 거동에 관한 연구)

  • 여수형;이욱성;백영준;채기웅;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.28-33
    • /
    • 2001
  • WC-6%Co 소결체를 열처리할 때 발생하는, 시편 표면에서의 급격한 입자 성장 거동을 열처리 분위기를 변수로 하여 관찰하였다. 열처리 분위기로 수소와 메탄을 각각 사용하였고, 온도는 1400~145$0^{\circ}C$, 압력은 1~3 Torr, 그리고 시간은 100분까지 변화시켰다. 표면에서의 입자 성장은 수소 분위기보다 메탄 분위기를 사용하는 경우 훨씬 빠르게 일어났다. 그리고 열처리 온도가 증가할수록, 압력이 감소할수록 입자 성장 속도가 증가하였다. 이때 성장한 입자의 크기 분포는 비정규 분포를 보였다. 한편, 입자 성장은 열처리시 증발하는 시편의 Co 무게 감소와 밀접한 관계를 보였다. 이러한 표면에서의 입자 성장 현상을 열처리한 조건과 관련되어 WC-Co 상태도에서 예측할 수 있는, 탈탄-탄화 반응 및 비정상 입자 성장 현상 관점으로 설명하였다.

  • PDF

An analysis of the Wi-Ni Carbide Alloy Diffusion Bonding technique in its application for DME Engine Fuel Pump

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.246-251
    • /
    • 2020
  • Dimethyl Ether(DME) engine use a highly efficient alternative fuel having a great quantity of oxygen and has a advantage no polluting PM gas. The existing DME fuel cam material is a highly expensive carbide alloy, and it is difficult to take a price advantage. Therefore the study of replacing body area with inexpensive steel material excluding piston shoe and contact area which demands high characteristics is needed. The development of WC-Ni base carbide alloy optimal bonding composition technique was accomplished in this study. To check out the influence of bonding temperature and time, bonding characteristics of sintering temperature was experimented. The hardness of specimen and bonding rate were measured using ultrasound equipment. The bonding state of each condition was excellent, and the thickness of mid-layer, temperature and maintaining time were measured. The mid-layer thickness according to bonding temperature and maintaining time were observed with optical microscope. We analyzed the micro-structural analysis, formation of bonding specimen, wafer fabrication and fuel cam abrasion test. Throughout this study, we confirmed that the fuel cam for DME engine which demands high durability against velocity and pressure is excellent.

Tensile Strength Properties of the Diffusion Bonding Copula Shape for Micro PCD Tool Fabrication (초소형 PCD 공구 제작을 위한 확산접합부의 형상에 따른 인장강도 특성)

  • Jeong, Ba Wi;Kim, Uk Su;Chung, Woo Seop;Park, Jeong Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.25-30
    • /
    • 2015
  • This study involved the fabrication of precision machine tools using a polycrystalline diamond tip [sintered PCD and cemented carbide (WC-Co) tip] and WC-Co shanks via diffusion bonding with a paste-type nickel alloy filler metal. Diffusion bonding is a process whereby two materials are pressed together at high temperature and high pressure for a sufficient period of time to allow significant atomic diffusion to occur. For smooth progress, a filler metal of nickel alloy was used at the interface. Optical microscopy images were used to observe the copula of the bonded layer. It was confirmed that cracks occurred near the junction in all cases. The tensile strength of the bond was measured using a universal testing machine (UTM) with WC-Co proportional test specimens.