• Title/Summary/Keyword: WC/Co powder

Search Result 177, Processing Time 0.028 seconds

A Methodological Study of the Wear-Resistant Property Improvement on the Thermal Spray Coating for Capstan (Capstan용 용사코팅의 내마모 특성 향상 방안)

  • 어순철
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.63-70
    • /
    • 2000
  • Thermal spray coating process has proven to be effective at producing hard, dense, wear resistance coatings on the relatively mild substrates. Among several spraying techniques, HVOF (High Velocity Oxygen Fuel) and plasma coating processes, which are preferentially used for the wear resistance application such as capstans, have been applied in this study. The effects of pre-treatment, it-process and post-treatment parameters on the wear and mechanical properties of WC+12%Co, Cr3C2 and Al2O3 powder coatings have been investigated and correlated with the microstructures. The results indicated that the carbide coating was more preferable to the oxide coatings and the post-treatments consisting of vacuum annealing and sealing on carbide coatings led to significant improvements in wear resistance, adhesive strength and coating phase stabilization over the other processing techniques in this application.

  • PDF

Current Status of Smelting and Recycling Technologies of Tungsten (텅스텐의 제련과 리사이클링 현황)

  • Sohn, Ho-Sang
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.342-351
    • /
    • 2021
  • Because of its unique properties, tungsten is a strategic and rare metal used in various industrial applications. However, the world's annual production of tungsten is only 84000 t. Ammonium paratungstate (APT), which is used as the main intermediate in industrial tungsten production, is usually obtained from tungsten concentrates of wolframite and scheelite by hydrometallurgical treatment. Intermediates such as tungsten trioxide, tungsten blue oxide, tungstic acid, and ammonium metatungstate can be derived from APT by thermal decomposition or chemical attack. Tungsten metal powder is produced through the hydrogen reduction of high-purity tungsten oxides, and tungsten carbide powder is produced by the reaction of tungsten powder and carbon black powder at 1300-1700℃ in a hydrogen atmosphere. Tungsten scrap can be divided into hard and soft scrap based on shape (bulk or powder). It can also be divided into new scrap generated during the production of tungsten-bearing goods and old scrap collected at the end of life. Recycling technologies for tungsten can be divided into four main groups: direct, chemical, and semi-direct recycling, and melting metallurgy. In this review, the current status of tungsten smelting and recycling technologies is discussed.

Role of Development of Submicro-grained Hardmetal in NEDO National Project "High Precision Micro-components"

  • Hayashi, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.340-341
    • /
    • 2006
  • High functional micro devices are demanded in a variety of fields. For realising such demands, development of high-precision micro-components installed in the devices are needed. To achieve high-precision in the mold processing of micro-components, the development of mold materials, i.e., the development of WC-Co hardmetal with higher hardness and fracture strength is essential, together with the developments of processing technology of high precision mold and mold-forming technology of high precision micro-components, etc. The role of development of the finer submicro-grained hardmetal in a NEDO national project aiming the integrated development of these all technologies and some results are mainly explained.

  • PDF

Influence of Cobalt Content on the Fatigue Strength of WC-Co Hardmetals

  • Nakajima, Takeshi;Hosokawa, Hiroyuki;Shimojima, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.623-624
    • /
    • 2006
  • The behavior of hardmetals under cyclic loads is investigated. Unnotched specimens were employed to obtain practical information regarding fatigue in hardmetals. All the tested hardmetals exhibit an increase in the number of cycles until failure with a decrease in the maximum stress, i.e., the hardmetals exhibit a high fatigue sensitivity. The fatigue strength increases with the cobalt content. Although distinct fatigue limits, as observed in metals, cannot be observed, the calculated fatigue limit stress at $10^7$ cycles is found to be approximately 70% of the flexural strength, and the stress value exhibits a linear relationship with the flexural stress.

  • PDF

Fabrication of Sintered Compact of Fe-TiB2 Composites by Pressureless Sintering of (FeB+TiH2) Powder Mixture

  • Huynh, Xuan-Khoa;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.282-286
    • /
    • 2016
  • A sintered body of $TiB_2$-reinforced iron matrix composite ($Fe-TiB_2$) is fabricated by pressureless-sintering of a mixture of titanium hydride ($TiH_2$) and iron boride (FeB) powders. The powder mixture is prepared in a planetary ball-mill at 700 rpm for 3 h and then pressurelessly sintered at 1300, 1350 and $1400^{\circ}C$ for 0-2 h. The optimal sintering temperature for high densities (above 95% relative density) is between 1350 and $1400^{\circ}C$, where the holding time can be varied from 0.25 to 2 h. A maximum relative density of 96.0% is obtained from the ($FeB+TiH_2$) powder compacts sintered at $1400^{\circ}C$ for 2 h. Sintered compacts have two main phases of Fe and $TiB_2$ along with traces of TiB, which seems to be formed through the reaction of TiB2 formed at lower temperatures during the heating stage with the excess Ti that is intentionally added to complete the reaction for $TiB_2$ formation. Nearly fully densified sintered compacts show a homogeneous microstructure composed of fine $TiB_2$ particulates with submicron sizes and an Fe-matrix. A maximum hardness of 71.2 HRC is obtained from the specimen sintered at $1400^{\circ}C$ for 0.5 h, which is nearly equivalent to the HRC of conventional WC-Co hardmetals containing 20 wt% Co.

A Study on the Erosion Behavior of the Ceramic Sprayed Coating Layer in the Molten 55% Al-Zn (용융 55%Al-Zn 중에서 세라믹 용사 피막의 침식 거동에 관한 연구)

  • 강태영;임병문;최장현;김영식
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.51-59
    • /
    • 2000
  • Sink roll has been used in molten 55%Al-Zn alloy bath of continuous galvanizing line for sinking and stabilizing working steel strip in molten metal bath. In the process, the sink roll body inevitably build up dross compounds and pitting on the sink roll surface during 55%Al-Zn alloy coated strip production, and the life time of the sink roll is shorten by build up dross compounds and pitting. The present study examined the application of thermally sprayed ceramic coatings method on sink roll body for improving erosion resistance at molten 55% Al-Zn pool. In this experiment, the stainless steels such as STS 316L and STS 430F were used as the substrate materials. The CoNiCr and WE-Co powder were selected as bond coating materials. Moreover $Al_2O_3-ZrO_2-SiO_2 and ZrO_2-SiO_2$ powders selected as the top coating materials. Appearances of the specimens before and after dipping to molten 55%Al-Zn pool were compared and analyzed. As a result of this study, STS430F of substrate, WC-Co of bond spray coatings, $ZrO_2-SiO_2$ power of top spray coatings is the best quality in erosion resistance test at molten 55%Al-Zn pool

  • PDF

Polishing of Ultra-Clean Internal Surface Using Magnetic Force (자력에 의한 극청정 내면의 연마가공에 관한 연구)

  • 김정두;허강운
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2786-2795
    • /
    • 2000
  • Recently, the technology for internal polishing is needed for ultra-clean machining for the prevention of corrosion and pollution of parts is the area of high technology industries such as semiconductor, electronics, telecommunication optics, aerospace, and motors. In this study, an internal polishing system using the magnetic force was developed for the production of ultra-clean tubes with averaged surface roughness ranging from 0.2㎛ to 0.05㎛ or less, and magnetic abrasives composed of WC/Co powder were developed, After finding the optimal condition on each, machining characteristics using newly developed abrasive were analyzed. Form the results obtained by experimental design method, the optimal polishing condition was analyzed and, thhereafter internal polishing was done.