• Title/Summary/Keyword: WAVE communication System

Search Result 630, Processing Time 0.024 seconds

A Study on Improvement of Wave Height Algorithm using Accelerometer (가속도계를 이용한 파고 알고리즘 개선에 관한 연구)

  • Chung, Dong-Keun;Lim, Myung-Jae;Lee, Joon-Taik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.215-220
    • /
    • 2014
  • Most of studies on wave height algorithms that are using at buoys describe algorithms using double integral to determine the position data from the acceleration data measured from the accelerometer. but sometimes, it can involve some cumulative error in that process, and result in misjudgment or unstabe system. On the other hand, It is widely known that the motion of fluid particles on or underneath a linear progressive wave is periodic and elliptic. This fact is considered in this article and leads a improved algorithms with no integral processing.

Usage of RSSI in WAVE Handover (WAVE 핸드오버상에서 수신 신호 세기의 이용)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1449-1454
    • /
    • 2012
  • Received signal strength indicator (RSSI) represents the strength of the received signal at the front end of analog-to-digital convertor (ADC) input. RSSI value can be used for deciding the status of channel at the receiver. In this paper, the usage of RSSI in handover is studied using the practical measurement data. We first measure RSSI in 5.9GHz frequency band which is commonly used in wireless access in vehicular environments (WAVE) system. i.e., vehicular communications. Then, to implement a fast handover, the usability of RSSI data is analyzed based on the measured data. We also apply handover in practical highway environments.

Study on the influence of Alpha wave music on working memory based on EEG

  • Xu, Xin;Sun, Jiawen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.467-479
    • /
    • 2022
  • Working memory (WM), which plays a vital role in daily activities, is a memory system that temporarily stores and processes information when people are engaged in complex cognitive activities. The influence of music on WM has been widely studied. In this work, we conducted a series of n-back memory experiments with different task difficulties and multiple trials on 14 subjects under the condition of no music and Alpha wave leading music. The analysis of behavioral data show that the change of music condition has significant effect on the accuracy and time of memory reaction (p<0.01), both of which are improved after the stimulation of Alpha wave music. Behavioral results also suggest that short-term training has no significant impact on working memory. In the further analysis of electrophysiology (EEG) data recorded in the experiment, auto-regressive (AR) model is employed to extract features, after which an average classification accuracy of 82.9% is achieved with support vector machine (SVM) classifier in distinguishing between before and after WM enhancement. The above findings indicate that Alpha wave leading music can improve WM, and the combination of AR model and SVM classifier is effective in detecting the brain activity changes resulting from music stimulation.

Implementation of Binary Search Algorithm for RFID system and A Study of Performance with RFID system (RFID용 이진 검색 알고리즘의 구현 및 시스템 성능에 관한 연구)

  • Cho, Kyung-Chul;Son, Sung-Chan;Kim, Young-Cheol
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.285-289
    • /
    • 2005
  • In recent years, RFID is widely used in industrial applications including factory, material flow, logistics and defense areas. In this paper, we developed a RFID baseband system with ASK modulation and convolutional channel code. A commercial ASK RF module is used its frequency range in $350{\sim}351$MHz and power is 10mW and the convolution code is constraint length k=3 and rate R=1/2 The performance is measured implemented the binary search algorithm as anti-collision method and we show the wave shapes whit collision occurrence.

  • PDF

A Combined QRS-complex and P-wave Detection in ECG Signal for Ubiquitous Healthcare System

  • Bhardwaj, Sachin;Lee, Dae-Seok;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.98-103
    • /
    • 2007
  • Long term Electrocardiogram (ECG) [1] analysis plays a key role in heart disease analysis. A combined detection of QRS-complex and P-wave in ECG signal for ubiquitous healthcare system was designed and implemented which can be used as an advanced warning device. The ECG features are used to detect life-threating arrhythmias, with an emphasis on the software for analyzing QRS complex and P-wave in wireless ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server will transfer alarm conditions to a doctor's Personal Digital Assistant (PDA). Doctor can diagnose the patients who have survived from cardiac arrhythmia diseases.

An ECG Monitoring and Analysis Method for Ubiquitous Healthcare System in WSN

  • Bhardwaj, Sachin;Lee, Dae-Seok;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • The aim of this paper is to design and implement a new ECG signal monitoring and analysis method for the home care of elderly persons or patients, using wireless sensor network (WSN) technology. The wireless technology for home-care purpose gives new possibilities for monitoring of vital parameter with wearable biomedical sensors and will give the patient freedom to be mobile and still be under continuously monitoring. Developed platform for portable real-time analysis of ECG signals can be used as an advanced diagnosis and alarming system. The ECG features are used to detect life-threatening arrhythmias, with an emphasis on the software for analyzing the P-wave, QRS complex, and T-wave in ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server transfer diagnostic results and alarm conditions to a doctor's PDA. Doctor can diagnose the patients who have survived from arrhythmia diseases.

Study on the safety requirements identification method of the Commuication Based Train Cotrol (무선통신기반 열차제어의 지상무선통신장치 안전요구사항 도출방안에 관한 연구)

  • Lee, Kang-Mi;Shin, Duc-Ko;Lee, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1023-1026
    • /
    • 2007
  • CBTC (Communication Based Train Control) is a railroad system, using wireless communication for data transmission between on-board units and ground units, that makes ground computer periodically collect position and speed data from each train and transmits the preceding train's distance data up to speed limit point so as to make on-board control unit control the optimum train speed. Due to the fact that wireless communication system for train control employs only limited frequency band and output frequency, a number of ground communication units should be installed at track-side; also a running train should carry out Handover function which maintains the communication by accessing a new communication channel of the adjacent on-board communication units in accordance with the output of received radio wave. Especially CBTC is largely dependent on Handoff function between ground communication units. Therefore, this paper provides the method of identification of hazard between ground communication units and on board units.

  • PDF

Coordinated Millimeter Wave Beam Selection Using Fingerprint for Cellular-Connected Unmanned Aerial Vehicle

  • Moon, Sangmi;Kim, Hyeonsung;You, Young-Hwan;Kim, Cheol Hong;Hwang, Intae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1929-1943
    • /
    • 2021
  • Millimeter wave (mmWave) communication based on the wide bandwidth of >28 GHz is one of the key technologies for cellular-connected unmanned aerial vehicles (UAVs). The selection of mmWave beams in such cellular-connected UAVs is challenging and critical, especially when downlink transmissions toward aerial user equipment (UE) suffer from poor signal-to-interference-plus-noise ratio (SINR) more often than their terrestrial counterparts. This study proposed a coordinated mmWave beam selection scheme using fingerprint for cellular-connected UAV. The scheme comprises fingerprint database configuration and coordinated beam selection. In the fingerprint database configuration, the best beam index from the serving cell and interference beam indexes from neighboring cells are stored. In the coordinated beam selection, the best and interference beams are determined using the fingerprint database information instead of performing an exhaustive search, and the coordinated beam transmission improves the SINR for aerial UEs. System-level simulations assess the UAV effect based on the third-generation partnership project-new radio mmWave and UAV channel models. Simulation results show that the proposed scheme can reduce the overhead of exhaustive search and improve the SINR and spectral efficiency.

Development of an Acoustic-Based Underwater Image Transmission System

  • Choi, Young-Cheol;Lim, Yong-Kon;Park, Jong-Won;Kim, Sea-Monn;Kim, Seung-Geun;Kim, Sang-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.109-114
    • /
    • 2003
  • Wireless communication systems are inevitable for efficient underwater activities. Because of the poor propagation characteristics of light and electromagnetic waves, acoustic waves are generally used for the underwater wireless communication. Although there are many kinds of information type, visual images take an essential role especially for search and identification activities. For this reason, we developed an acoustic-based underwater image transmission system under a dual use technology project supported by MOCIE (Ministry of Commerce, Industry and Energy). For the application to complicated and time-varying underwater environments all-digital transmitter and receiver systems are investigated. Array acoustic transducers are used at the receiver, which have the center frequency of 32kHz and the bandwidth of 4kHz. To improve transmission speed and quality, various algorithms and systems are used. The system design techniques will be discussed in detail including image compression/ decompression system, adaptive beam- forming, fast RLS adaptive equalizer, ${\partial}/4$ QPSK (Quadrilateral Phase Shift Keying) modulator/demodulator, and convolution coding/ Viterbi. Decoding.

  • PDF

A Development of the High-Performance Signal Processor for the Compact Millimeter Wave Radar (소형 밀리미터파 레이더를 위한 고성능 신호처리기 개발)

  • Choi, Jin-Kyu;Ryu, Han-Chun;Park, Seung-Wook;Kim, Ji-Hyun;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.161-167
    • /
    • 2017
  • Recently, small radar has been reduced in size and power consumption to cope with various operating environments. It also requires the development of a small millimeter wave radar with high range resolution to disable the system of target with a single strike. In this paper, we design and implement a signal processor that can be used in small millimeter wave radar. The signal processor for the small millmeter wave radar is designed with a digital IF(Intermediate Frequency) receiver and DFT(Discrete Fourier Transform) module capable of real time FFT operation for miniaturization and low power consumption. Also it was to leverage the FPGA(Field Programmable Gate Array) and DAC(Digital Analog Converter) as a means for correcting the distortion of signals that can occur in the receive path of the small millimeter wave radar to create a RF signal that is used by the system. Finally, we verified the signal processor presented through performance test