• Title/Summary/Keyword: WATERSHED

Search Result 3,666, Processing Time 0.029 seconds

Spatio-temporal Fluctuations with Influences of Inflowing Tributary Streams on Water Quality in Daecheong Reservoir (대청호의 시공간적 수질 변화 특성 및 호수내 유입지천의 영향)

  • Kim, Gyung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.158-173
    • /
    • 2012
  • The objectives of this study were to analyze the longitudinal gradient and temporal variations of water quality in Daecheong Reservoir in relation to the major inflowing streams from the watershed, during 2001~2010. For the study, we selected 7 main-stream sites of the reservoir along the main axis of the reservoir, from the headwater to the dam and 8 tributary streams. In-reservoir nutrients of TN and TP showed longitudinal declines from the headwater to the dam, which results in a distinct zonation of the riverine ($R_z$, M1~M3), transition ($T_z$, M4~M6), and lacustrine zone ($L_z$, M7) in water quality, as shown in other foreign reservoirs. Chlorophyll-a (CHL) and BOD as an indicator of organic matter, were maximum in the $T_z$. Concentration of total phosphorus (TP) was the highest (8.52 $mg\;L^{-1}$) on March in the $R_z$, and was the highest (165 ${\mu}g\;L^{-1}$) in the $L_z$ on July. Values of TN was the maximum (377 ${\mu}g\;L^{-1}$) on August in the $R_z$, and was the highest (3.76 $mg\;L^{-1}$) in the $L_z$ on August. Ionic dilution was evident during September~October, after the monsoon rain. The mean ratios of TN : TP, as an indicator of limiting factor, were 88, which indicates that nitrogen is a surplus for phytoplankton growth in this system. Nutrient analysis of inflowing streams showed that major nutrient sources were headwater streams of T1~T2 and Ockcheon-Stream of T5, and the most influential inflowing stream to the reservoir was T5, which is located in the mid-reservoir, and is directly influenced by the waste-water treatment plants. The key parameters, influenced by the monsoon rain, were TP and suspended solids (SS). Empirical models of trophic variables indicated that variations of CHL in the $R_z$ ($R^2$=0.044, p=0.264) and $T_z$ ($R^2$=0.126, p=0.054) were not accounted by TN, but were significant (p=0.032) in the $L_z$. The variation of the log-transformed $I_r$-CHL was not accounted ($R^2$=0.258, p=0.110) by $I_w$-TN of inflowing streams, but was determined ($R^2$=0.567, p=0.005) by $I_w$-TP of inflowing streams. In other words, TP inputs from the inflowing streams were the major determinants on the in-reservoir phytoplankton growth. Regression analysis of TN : TP suggested that the ratio was determined by P, rather than N. Overall, our data suggest that TP and suspended solids, during the summer flood period, should be reduced from the eutrophication control and P-input from Ockcheon-Stream should be controlled for water quality improvement.

Assessment of Soil Loss Estimated by Soil Catena Originated from Granite and Gneiss in Catchment (소유역단위 화강암/편마암 기원 토양 연접군(catena)에 따른 토양 유실 평가)

  • Hur, Seung-Oh;Sonn, Yeon-Kyu;Jung, Kang-Ho;Park, Chan-Won;Lee, Hyun-Hang;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.383-391
    • /
    • 2007
  • This study was conducted for an assessment through the estimation of soil loss by each catchment classified by soil catena. Ten catchments, which are Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01, Gyongancheon02, Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02, Youngsangang08, were selected from the hydrologic unit map and the detailed soil digital map (1:25,000) for this study. The catchments like Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01 and Gyongancheon02 were mainly composed with soils originated from gneiss. The catchments like Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 and Youngsangang08 were mainly composed with soils originated from granites. The grades, which are divided into seven grades with A(very tolerable), B(tolerable), C(moderate), D(low), E(high), F(severe), G(very severe), of soil erosion estimated by USLE in catchments were distributed in most A and B because of paddy land and forestry. In detailed, the soil erosion grade of catchments mainly distributing soils originated from gneiss showed more the distribution of B and C than it of catchments mainly distributing soils originated from granites. The reason of results would be derived from topographic characteristics of soils originated from gneiss located at mountainous. The soil loss according to soil catena linked with Songsan and Jigok series, which are soils originated from gneiss was calculated with $7.66ton\;ha^{-1}\;yr^{-1}$. The soil loss of Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 which have the soil catena linked with Samgak and Sangju soil series originated from granite, was calculated with $5.55ton\;ha^{-1}\;yr^{-1}$. The soil loss of Youngsangang08 which have the soil catena linked with Songjung and Baeksan soil series originated from granite was calculated with $9.6ton\;ha^{-1}\;yr^{-1}$, but the conclusion on soil loss in this kind of soil catena would be drawn from the analysis of more catchments. In conclusion, the results of this study inform that the classification of soil catena by catchments and estimation of soil loss according to soil catena would be effective for analysis on the grade of non-point pollution by soil erosion in a catchment.

A Study on the Use of GIS-based Time Series Spatial Data for Streamflow Depletion Assessment (하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 관한 연구)

  • YOO, Jae-Hyun;KIM, Kye-Hyun;PARK, Yong-Gil;LEE, Gi-Hun;KIM, Seong-Joon;JUNG, Chung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The rapid urbanization had led to a distortion of natural hydrological cycle system. The change in hydrological cycle structure is causing streamflow depletion, changing the existing use tendency of water resources. To manage such phenomena, a streamflow depletion impact assessment technology to forecast depletion is required. For performing such technology, it is indispensable to build GIS-based spatial data as fundamental data, but there is a shortage of related research. Therefore, this study was conducted to use the use of GIS-based time series spatial data for streamflow depletion assessment. For this study, GIS data over decades of changes on a national scale were constructed, targeting 6 streamflow depletion impact factors (weather, soil depth, forest density, road network, groundwater usage and landuse) and the data were used as the basic data for the operation of continuous hydrologic model. Focusing on these impact factors, the causes for streamflow depletion were analyzed depending on time series. Then, using distributed continuous hydrologic model based DrySAT, annual runoff of each streamflow depletion impact factor was measured and depletion assessment was conducted. As a result, the default value of annual runoff was measured at 977.9mm under the given weather condition without considering other factors. When considering the decrease in soil depth, the increase in forest density, road development, and groundwater usage, along with the change in land use and development, and annual runoff were measured at 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, and 1003.7mm, respectively. The results showed that the major causes of the streaflow depletion were lowered soil depth to decrease the infiltration volume and surface runoff thereby decreasing streamflow; the increased forest density to decrease surface runoff; the increased road network to decrease the sub-surface flow; the increased groundwater use from undiscriminated development to decrease the baseflow; increased impervious areas to increase surface runoff. Also, each standard watershed depending on the grade of depletion was indicated, based on the definition of streamflow depletion and the range of grade. Considering the weather, the decrease in soil depth, the increase in forest density, road development, and groundwater usage, and the change in land use and development, the grade of depletion were 2.1, 2.2, 2.5, 2.3, 2.8, 2.2, respectively. Among the five streamflow depletion impact factors except rainfall condition, the change in groundwater usage showed the biggest influence on depletion, followed by the change in forest density, road construction, land use, and soil depth. In conclusion, it is anticipated that a national streamflow depletion assessment system to be develop in the future would provide customized depletion management and prevention plans based on the system assessment results regarding future data changes of the six streamflow depletion impact factors and the prospect of depletion progress.

A Study on the Characteristics of Stream Flow Path and Water System Distribution in Gugok Garden, Korea (한국 구곡원림(九曲園林)의 하천 유로 및 수계별 분포 특성)

  • Rho, Jae-Hyun;Choi, Young-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.50-65
    • /
    • 2021
  • In this study, the water flow system by measuring the flow-way type and distance of flow path that composes the Gugok through literature survey, field survey, and map work on Gugok gardens in Korea whose existence has been confirmed, while investigating and analyzing watersheds, river orders, and river grades. It was intended to reveal the watershed distribution and stream morphological characteristics of the Gugok gardens and to use them as basic data for future enjoyment and conservation of the Gugok gardens. The conclusion of the study is as follows. First, Of the 93 Gugok gardens that have been confirmed to exist, it was found that 11 places(11.8%) were found to have a descending(top-down) type of Gugok that develops while descending along a stream. Second, As a result of analysis of the length of the flow path for each valley, Okryudonggugok(玉流洞九曲, Namsan-gugok) in Gimcheon, Gyeongsangbuk-do was found to have the shortest length of 0.44km among the surveyed valleys, while the flow distance of Muheulgugok(武屹九曲) located in Seongju-gun and Gimcheon-si, Gyeongsangbuk-do was 31.1km, showing the longest flowing distance. The average flow path length of the Gugok Garden in Korea was 6.24km, and the standard deviation was 4.63km, indicating that the deviation between the 'curved type'e and the 'valley type' was severe. In addition, 14(15.1%) Gugok gardens were found to be partially submerged due to dam construction. Third, As a result of analyzing the waters area where Gugok garden is located, the number of Nakdong river basins was much higher at 52 sites(55.9%), followed by the Hangang river basin at 27 sites(28.7%), the Geum river basin at 9 sites(9.7%), and the Yeongsan river and Seomjin river basins at 5(5.4%). Fourth, All Gugok gardens located in the Han river region were classified as the Han river system, and the Gugok garden located on the Nakdong river was classified as the main Nakdong river system, except for 7 places including 5 places in the Nakdong Gangnam Sea water system and 2 places in the Nakdong Gangdong sea water system. As a result of synthesizing the river order of the flow path where Gugok garden is located, Gugok, which uses the main stream as the base of Gugok, is 3 places in the Hangang water system, 5 places in the Nakdong river system, 2 places in the Geumgang water system, and 1 place in the Yeongsangam/Seomjin river system. A total of 11 locations(11.5%) were found, including 36 locations(38.2%) in the first branch, 29 locations(31.2%) in the second branch, and 16 locations(17.0%) in the third branch. And Gugok garden, located on the 4th tributary, was found to be Taehwa Five-gok(太華五曲) set in Yonghwacheon Stream in Cheorwon in the Han river system, and Hoenggyegok(橫溪九曲) in Yeongcheon Hoenggye Stream in the Nakdong river system. Fifth, As a result of the river grade analysis of the rivers located in the Gugok garden Forest, the grades of the rivers located in the Gugok garden were 13 national rivers(14.0%), 7 local first-class rivers(7.5%), and 74 local second-class rivers(78.5%) was shown.

Analysis of Forestry Structure and Induced Output Based on Input - output Table - Influences of Forestry Production on Korean Economy - (산업관련표(産業關聯表)에 의(依)한 임업구조분석(林業構造分析)과 유발생산액(誘發生産額) -임업(林業)이 한국경제(韓國經濟)에 미치는 영향(影響)-)

  • Lee, Sung-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.4-14
    • /
    • 1974
  • The total forest land area in Korea accounts for some 67 percent of the nation's land total. Its productivity, however, is very low. Consequently, forest production accounts for only about 2 percent of the gross national product and a minor proportion of no more than about 5 percent versus primary industry. In this case, however, only the direct income from forestry is taken into account, making no reference to the forestry output induced by other industrial sectors. The value added Or the induced forestry output in manufacturing the primary wood products into higher quality products, makes a larger contribution to the economy than direct contribution. So, this author has tried to analyze the structure of forestry and compute the repercussion effect and the induced output of primary forest products when utilized by other industries for their raw materials, Hsing the input-output table and attached tables for 1963 and 1966 issued by the Bank of Korea. 1. Analysis of forestry structure A. Changes in total output Durng the nine-year period, 1961-1969, the real gross national product in Korea increased 2.1 times, while that of primary industries went up about 1. 4 times. Forestry which was valued at 9,380 million won in 1961, was picked up about 2. 1 times to 20, 120 million won in 1969. The rate of the forestry income in the GNP, accordingly, was no more than 1.5 percent both in 1961 and 1962, whereas its rate in primary industries increased 3.5 to 5.4 percent. Such increase in forestry income is attributable to increased forest production and rise in timber prices. The rate of forestry income, nonetheless, was on the decrease on a gradual basis. B. Changes in input coefficient The input coefficient which indicates the inputs of the forest products into other sectors were up in general in 1966 over 1963. It is noted that the input coefficient indicating the amount of forest products supplied to such industries closely related with forestry as lumber and plywood, and wood products and furniture, showed a downward trend for the period 1963-1966. On the other hand, the forest input into other sectors was generally on the increase. Meanwhile, the input coefficient representing the yolume of the forest products supplied to the forestry sector itself showed an upward tendency, which meant more and more decrease in input from other sectors. Generally speaking, in direct proportion to the higher input coefficient in any industrial sector, the reinput coefficient which denotes the use of its products by the same sector becomes higher and higher. C. Changes in ratio of intermediate input The intermediate input ratio showing the dependency on raw materials went up to 15.43 percent m 1966 from 11. 37 percent in 1963. The dependency of forestry on raw materials was no more than 15.43 percent, accounting for a high 83.57 percent of value added. If the intermediate input ratio increases in any given sector, the input coefficient which represents the fe-use of its products by the same sector becomes large. D. Changes in the ratio of intermediate demand The ratio of the intermediate demand represents the characteristics of the intermediary production in each industry, the intermediate demand ratio in forestry which accunted for 69.7 percent in 1963 went up to 75.2 percent in 1966. In other words, forestry is a remarkable industry in that there is characteristics of the intermediary production. E. Changes in import coefficient The import coefficient which denotes the relation between the production activities and imports, recorded at 4.4 percent in 1963, decreased to 2.4 percent in 1966. The ratio of import to total output is not so high. F. Changes in market composition of imported goods One of the major imported goods in the forestry sector is lumber. The import value increased by 60 percent to 667 million won in 1966 from 407 million won in 1963. The sales of imported forest products to two major outlets-lumber and plywood, and wood products and furniture-increased to 343 million won and 31 million won in 1966 from 240million won and 30 million won in 1963 respectively. On the other hand, imported goods valued at 66 million won were sold to the paper products sector in 1963; however, no supply to this sector was recorded in 1963. Besides these major markets, primary industries such as the fishery, coal and agriculture sectors purchase materials from forestry. 2. Analysis of repercussion effect on production The repercussion effect of final demand in any given sector upon the expansion of the production of other sectors was analyzed, using the inverse matrix coefficient tables attached to the the I.O. Table. A. Changes in intra-sector transaction value of inverse matrix coefficient. The intra-sector transaction value of an inverse matrix coefficient represents the extent of an induced increase in the production of self-support products of the same sector, when it is generated directly and indirectly by one unit of final demand in any given sector. The intra-sector transaction value of the forestry sector rose from 1.04 in 1963 to 1, 11 in 1966. It may well be said, therefore, that forestry induces much more self-supporting products in the production of one unit of final demand for forest products. B. Changes in column total of inverse matrix coefficient It should be noted that the column total indicates the degree of effect of the output of the corresponding and related sectors generated by one unit of final demand in each sector. No changes in the column total of the forestry sector were recorded between the 1963 and 1966 figures, both being the same 1. 19. C. Changes in difference between column total and intra-sector transaction amount. The difference between the column total and intra-sector transaction amount by sector reveals the extent of effect of output of related industrial sector induced indirectly by one unit of final demand in corresponding sector. This change in forestry dropped remarkable to 0.08 in 1966 from 0.15 in 1963. Accordingly, the effect of inducement of indirect output of other forestry-related sectors has decreased; this is a really natural phenomenon, as compared with an increasing input coefficient generated by the re-use of forest products by the forestry sector. 3. Induced output of forestry A. Forest products, wood in particular, are supplied to other industries as their raw materials, increasng their value added. In this connection the primary dependency rate on forestry for 1963 and 1966 was compared, i. e., an increase or decrease in each sector, from 7.71 percent in 1963 to 11.91 percent in 1966 in agriculture, 10.32 to 6.11 in fishery, 16.24 to 19.90 in mining, 0.76 to 0.70 in the manufacturing sector and 2.79 to 4.77 percent in the construction sector. Generally speaking, on the average the dependency on forestry during the period 1963-1966 increased from 5.92 percent to 8.03 percent. Accordingly, it may easily be known that the primary forestry output induced by primary and secondary industries increased from 16, 109 million won in 1963 to 48, 842 million won in 1966. B. The forest products are supplied to other industries as their raw materials. The products are processed further into higher quality products. thus indirectly increasing the value of the forest products. The ratio of the increased value added or the secondary dependency on forestry for 1963 and 1966 showed an increase or decrease, from 5.98 percent to 7.87 percent in agriculture, 9.06 to 5.74 in fishery, 13.56 to 15.81 in mining, 0.68 to 0.61 in the manufacturing sector and 2.71 to 4.54 in the construction sector. The average ratio in this connection increased from 4.69 percent to 5.60 percent. In the meantime, the secondary forestry output induced by primary and secondary industries rose from 12,779 million Wall in 1963 to 34,084 million won in 1966. C. The dependency of tertiary industries on forestry showed very minor ratios of 0.46 percent and 0.04 percent in 1963 and 1966 respectively. The forestry output induced by tertiary industry also decreased from 685 million won to 123 million won during the same period. D. Generally speaking, the ratio of dependency on forestry increased from 17.68 percent in 1963 to 24.28 percent in 1966 in primary industries, from 4.69 percent to 5.70 percent in secondary industries, while, as mentioned above, the ratio in the case of tertiary industry decreased from 0.46 to 0.04 percent during the period 1963-66. The mining industry reveals the heaviest rate of dependency on forestry with 29.80 percent in 1963 and 35.71 percent in 1966. As it result, the direct forestry income, valued at 8,172 million won in 1963, shot up to 22,724 million won in 1966. Its composition ratio lo the national income rose from 1.9 percent in 1963 to 2.3 per cent in 1966. If the induced outcome is taken into account, the total forestry production which was estimated at 37,744 million won in 1963 picked up to 105,773 million won in 1966, about 4.5 times its direct income. It is further noted that the ratio of the gross forestry product to the gross national product. rose significantly from 8.8 percent in 1963 to 10.7 percent in 1966. E. In computing the above mentioned ratio not taken into consideration were such intangible, indirect effects as the drought and flood prevention, check of soil run-off, watershed and land conservation, improvement of the people's recreational and emotional living, and maintenance and increase in the national health and sanitation. F. In conclusion, I would like to emphasize that the forestry sector exercices an important effect upon the national economy and that the effect of induced forestry output is greater than its direct income.

  • PDF

Epidemiological Studies of Clonorchiasis. - I. Current Status and Natural Transition of the Endemicity of Clonorchis sinensis in Gimhae Gun and Delta, a High Endemic area in Korea (간흡충증(肝吸虫症)의 역학(疫學) - I. 고도유행지(高度流行地) 김해지방(金海地方)에 있어서의 간흡충감염(肝吸虫感染)의 현황(現況)과 자연추이(自然推移))

  • Kim, D.C.;Lee, O.Y.;Lee, J.S.;Ahn, J.S.;Chang, Y.M;Son, S.C.;Moon, I.S.
    • Journal of agricultural medicine and community health
    • /
    • v.8 no.1
    • /
    • pp.44-65
    • /
    • 1983
  • As a part of the epidemiological studies of clonorchiasis, this study was conducted to evaluate the current endemicity and the natural transition of the Clonorchis infection in Gimhae Gun and delta area a high endemic area in Korea in recent years, prior to the introduction of praziquantel which will eventually influence the status of the prevalence. The data obtained in this study in 1983 were evaluated for natural transition of the infection in comparison with those obtained 16 years ago in 1967 by the author(Kim, 1974). The areas of investigation, villages and schools surveyed, methods and techniques used in this study were the same as in 1967, except for the contents of the questionnaire for raw freshwater fish consumption by the local inhabitants. 1) The prevalence rate of clonorchiasis in the general population of the villages was 48.1% on the average out of a total of 484 persons examined. The average of those of the riverside-delta area was 65.2% and 43.0% in the inland area. Among the schoolchildren, the prevalence rate was 8.2% on the average out of a total of 1,423 examined. By area, the prevalence rate was 10.8% in the riverside delta area and 2.8% in the inland area. By sex, difference in the prevalence was seen only in the inhabitants of the inland area showing 52.4% in the male and 33.5% in the female. 2) In the natural transition of the infection, the prevalence rate among the inhabitants has decreased from 68.8% in 1967 to 48.1% in 1983, and in the schoolchildren from 56.4% in 1967 to 8.2% in 1983. The reduction rate was higher in the riverside-delta area than in the inland area. 3) In the prevalence rate by age, 11.9% was first seen in the 5-9 age group and the rate gradually increased up to 75.0% in the 50-59 age group. By sex, the rate was higher in the male than in the female in the 20-29 age group and over. 4) In the natural transition of the prevalence rate by age, the reduction rate of the infection during the past 16 years was greater in the younger age groups up to the 40-49 age group and reached the same level in the age group 50-59. Reduction was seen again in the age group over 60s. By sex, the reduction rate was greater in the female than in the male in the 20-29 age group and over. By area, the reduction rate was greater in the riverside delta area than in the inland area, particularly in the young age groups. 5) In the intensity of the infection among the cases, the mean egg out-put per mg feces per infected cases(EPmg) in the inhabitants was 6.3. EPmg of those of the river-side-delta area was 15.4 and that of the in-land was 2.8. On the other hand, in the schoolchildren, EPmg was 3.2, and no difference was seen between the two areas, the river-side-delta area and the inland area. 6) In the transition of the intensity of the infection by area, EPmg among the inhabitants inexplically increased from 7.8 in 1967 to 15.4 in 1983. This was probably caused by uneven specimen collection in the process of sampling the population. EPmg of the inhabitants in the inland area and those of the schoolchildren of both riverside delta and inland areas showed a similar decrease in the past 16 years. 7) The intensity of the infection by age showed a relatively low level in the 20-29 age group and below, and EPmg 5.1-9.5 was seen in the 30-39 age group and over. Sex, Epmg was 5.8 in the male and 4.7 the female. By in 8) In the transition of the intensity of the infection, EPmg decreased from 6.2 in 1967 to 5.4 in 1983. By age, in contrast to the figures of 1967 in which EPmg gradually increased with some fluctuation from 1.1 in the 0-4 age group to peak 10.5 in the 50-59 age group, in 1983 lower intensity of the infection was seen in the age group from 10-14 to 20-29 with the EPmg range of 0.6-2.7. 9) In the distribution of the clonorchiasis cases by the range of EPmg value, 43.2% of the cases were in 0.1 0.9 and 34.6% in 1.0-4.9. As a whole by cumulative percent, 44.6% of them were under 0.9 as light infection and 86.1% of them under 9.9 up to moderate infection. By sex, no difference was seen in Epmg. 10) In the transition of the distribution by the range of Epmg, the cases were distributed up to the range 80.0-99.9 in 1967 and to 60.0-79.9 in 1983. By cumulative percent, in the range of 0.1-0.9 and less, light infection, 34.3% of them were distributed in 1967 and 44.6% in 1983 with about 10% increase. In the range of 5.0-9.9 and less, up to moderate infection, 83.2% in 1967 and 86.1% in 1983 of the cases were seen, respectively. 11) The practice of raw freshwater fish consumption among the inhabitants seems to have decreased in recent years. Those who admitted to raw freshwater fish consumption in the last two years among the infected inhabitants were 59.3%, although 86.8% of them professed to have experience with raw freshwater fish consumption. 31.7% of those who have had experience of the raw freshwater fish consumption denied any further consumption in recent years. From an interview of 543 school-children, 24.1% of them admitted to an experience of raw freshwater fish consumption. However, those who have practised in the past two years comprized 17.9%. Those who denied raw freshwater fish consumption in recent years among those who had such experience were 26.0% out of 131 interviewed. The rate of raw freshwater fish consumption in both inhabitants and schoolchildren were higher in the male than in the female. On the contrary, the rate of those who did not practise in recent years among those who had experience of raw freshwater fish consumption was higher in the female than in the male. 12) The major reason for the reduction of raw freshwater fish consumption among the local inhabitants was the risk of the fluke infection. However, it has become apparent that such change of taste has resulted from water pollution impact which has affected throughout the areas of the freshwater systems in this locality since last several years. 13) In animal survey, Clonorchis infection was seen in 14.8% of 88 dogs examined and 3.7% of 27 house rats examined. It was noted that populations of dogs and cats have increased in the villages surveyed. Although the prevalence rate was lower in the present survey than those of 1967, the significance of the animals as the reservoir host has not changed. 14) Prevalence rate of Clonorchis infection by cercariae in the first intermediate host, Parafossarulus manchouricus, was 0.6% out of 517 snails examined. The infection rate was lower in comparison with 2.3% out of 2,124 examined in 1967. Moreover, sharp decreases in number and distribution of the intermediate host snails in many watershed areas of the huge freshwater systems in this locality seemed to reduce transmission of Clonorchis in connection with the intermediate host stage of its life cycle. 15) Clonorchis infection in the second intermediate fish hosts was relatively low. The mean number of Clonorchis metacercaria per fish in Pseudorasbora parva was 517 in 1983, whereas it was 1943 in 1968 through 1969. Environmental water pollution has also caused the decreased fish population density in these areas, and this has also apparently affected to the practice of raw freshwater fish consumption among the local inhabitants. 16) In conclusion, endemicity of Clonorchis infection in Gimhae Gum and delta area of the Nagdong River has sharply decreased during the past 16 years. The major cause of the regressive transition of the infection was the water pollution of the land water systems of this locality. The pollution has upset the ecosystems comprizing of the intermediate hosts of Clonorchis in many areas, and also affected to a significant extent to the discontinuance of the local inhabitants for raw freshwater fish consumption.

  • PDF