• Title/Summary/Keyword: WATERSHED

Search Result 3,658, Processing Time 0.032 seconds

Spatial Structure and Seasonal Variation of Temperature and Salinity in the Early Stage of Reclaimed Brackish Lake (Hwaong Reservoir) (간척호 (화옹호) 생성 초기의 수온과 염분의 공간적 구조와 계절적 변화)

  • Shin, Jae-Ki;Yoon, Chun-Gyeong;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.352-365
    • /
    • 2006
  • In order to evaluate the change of aquatic environment in the reclaimed Hwaong Reservoir, situated in the early stage after construction, this study was conducted to measure the change of precipitation, temperature, and salinity from June 2002 to January 2006. The range and mean of temperature was $-0.7{\sim}33.4^{\circ}C$ and $13.6^{\circ}C$, respectively. Temperature of upstream part rapidly changed during the transitional period; from spring to summer and from fall to winter. It showed abrupt decrease with high discharge from the streams temporarily. While, hypolimnetic temperature of upstream happened to be somewhat higher than that of surface or downstream. The range and mean of salinity was 0.3${\sim}$32.3 psu and 25.3 psu, respectively. Vertical difference of salinity was marked, and the change in the surface water was much higher than middle or bottom layers. It showed the marked difference at all stations, except for the bottom layer of upstream into which Namyang Stream flows, indicating that vertical gradient of salinity is strongly sustained in the reservoir. Salinity was changed markedly during the storm period (June${\sim}$October), and freshwater with low salinity was expanded from upstream to downstream along the surface layer. The surface of the reservoir was totally covered by the stream discharged water with a large amount of silt and low salinity during this period. The difference of temperature and salinity between the surface and bottom layer ranged $-10.6{\sim}9.7^{\circ}C$ and $-27.1{\sim}30.0$ psu, respectively. The big difference of salinity appeared with a large discharge of freshwater from the streams or large input of seawater through the gate. Salinity was negatively correlated with temperature, indicating the influence of monsoon storm events on the salinity under the whole watershed scale of this brackish reclaimed reservoir.

Application of the QUAL2E Model and Risk Assessment for Water Quality Management in Namyang Stream in Hwaong Polder (화옹유역 남양천의 수질관리를 위한 QUAL2E적용과 위해성 평가)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Kim, Hyung-Chul;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.110-118
    • /
    • 2006
  • The Namyang Stream in Hwaong polder was planned for several water uses including recreation, where people can contact the water and consume some amount during the recreational activity. A human health risk was assessed from exposure to E. coli in the Namyang Stream, which receives partially treated wastewater from watershed. The QUAL2E model was applied to simulate stream water quality, and this model was calibrated and verified with field monitoring data. The calibration result showed a high correlation coefficient of greater than 0.9. The mean concentration of E. coli in the Namyang Stream from the QUAL2E output was in the range of 5,000 ${\sim}$ 8,000 MPN 100 mL^{-1}$, which exceeded national and international guidelines. The Beta-Poisson was used to estimate the microbial risk of pathogens ingestion and the Monte-Carlo analysis (10,000 trials) was used to estimate the risk characterization of uncertainty. The Microbial risk assessment showed that the risk ranged from 7.9 ${\times}\;10^{-6}\;to\;9.4\;{\times}10^{-6}$. Based on USEPA guidelines, the range of $10^{-6}\;to\;10^{-8}$ was considered reasonable levels of risk for communicable disease transmission from environmental exposure, and the risk above $10^{-4}$ was considered to be in the danger of infection. Therefore, water quality of the Namyang Stream might not be in the danger of infection although it exceeded national and international guidelines. However, it was in the range of communicable disease transmission, and thorough wastewater collection and treatment at the source is recommended to secure safe recreation water quality.

Comparative Analysis of Long-term Water Quality Data Monitored in Andong and Imha Reservoirs (안동호와 임하호에서 관측한 장기 수질자료의 비교 분석)

  • Park, Sun-Jae;Choi, Seong-Mo;Park, Jong-Seok;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.21-31
    • /
    • 2006
  • The objectives of this study were to analyze trends of temporal water quality and trophic state in Andong and Imha reservoirs using chemical dataset during 1993 ${\sim}$ 2004, obtained from the Ministry of Environment, Korea. According to long-term limnological analyses, Suspended solids (SS) in Imha Reservoir were 2 ${\sim}$ 8 fold2 greater, than those in SS of Andong Reservoir, and the high solids increased total phosphorus (TP) and biological oxygen demand ($BOD_5$) and decreased the transparency, measured as Secchi depth (SD). Chlorophyll-a (CHL-a) increased little or decreased slightly in the both reservoirs during the high solids, resulting in reduced yields of CHL-a : TP ratios. The deviation analysis of Trophic State Index (TSI) in Imha Reservoir showed that about 70% of TSI (CHL-a)-TSI (SD) and TSI (CHL-a)-TSI(TP) values were less than zero and the lowest values were-60, indicating that influence of inorganic solids (or non-volatile solids) on phytoplankton growth was evident in Imha Reservoir and the impact was greater than that of Andong Reservoir. Inorganic solids in Imha Reservoir resulted in light limitation on phytoplankton growth and thus contributed variations in the relations among three parameters of trophic state index. Especially, seasonal data analysis of nutrients in both reservoirs showed that during the postmonsoon, mean TP concentration was Imha Reservoir greater in than that in Andong Reservoir. The higher TP concentrantion was mainly attributed to increases of inorganic solids from soil erosions and nonpoint source inputs within the watershed. The high inorganic turbidity in Imha Reservoir should be reduced for the conservation of water quality for, especially a tap water supply.

Warm Season Hydro-Meteorological Variability in South Korea Due to SSTA Pattern Changes in the Tropical Pacific Ocean Region (열대 태평양 SSTA 패턴 변화에 따른 우리나라 여름철 수문 변동 분석)

  • Yoon, Sun-kwon;Kim, Jong-Suk;Lee, Tae-Sam;Moon, Young-IL
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.49-63
    • /
    • 2016
  • In this study, we analyzed the effects of regional hydrologic variability during warm season (June-September) in South Korea due to ENSO (El $Ni{\tilde{n}}o$-Southern Oscillation) pattern changes over the Tropical Pacific Ocean (TPO). We performed composite analysis (CA) and statistical significance test by Student's t-test using observed hydrologic data (such as, precipitation and streamflow) in the 113 sub-watershed areas over the 5-Major River basin, in South Korea. As a result of this study, during the warm-pool (WP) El $Ni{\tilde{n}}o$ year shows a significant increasing tendency than normal years. Particularly, during the cold-tongue (CT) El $Ni{\tilde{n}}o$ decaying years clearly decreasing tendency compared to the normal years was appeared. In addition, the La $Ni{\tilde{n}}a$ years tended to show a slightly increasing tendency and maintain the average year state. In addition, from the result of scatter plot of the percentage anomaly of hydrologic variables during warm season, it is possible to identify the linear increasing tendency. Also the center of the scatter plot shows during the WP El $Ni{\tilde{n}}o$ year (+17.93%, +26.99%), the CT El $Ni{\tilde{n}}a$ year (-8.20%, -15.73%), and the La $Ni{\tilde{n}}a$ year (+8.89%, +15.85%), respectively. This result shows a methodology of the tele-connection based long-range water resources prediction for reducing climate forecasting uncertainty, when occurs the abnormal SSTA (such as, El $Ni{\tilde{n}}o$ and La $Ni{\tilde{n}}a$) phenomenon in the TPO region. Furthermore, it can be a useful data for water managers and end-users to support long-range water-related policy making.

Soil Erosion Risk Assessment by Soil Characteristics and Landuse in the Upper Nakdong River Basin (토양 특성 및 토지이용에 따른 낙동강 상류지역 토양침식위험성 평가)

  • Park, Chan-Won;Sonn, Yeon-Kyu;Hyun, Byung-Keun;Song, Kwan-Cheol;Chun, Hyun-Chung;Cho, Hyun-Jun;Moon, Yong Hee;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.890-896
    • /
    • 2012
  • This study was conducted to evaluate soil erosion risk with a standard unit watershed in the upper Upper Nakdong River Basin according to soil characteristics and landuse using the spatial soil erosion map. The study area is $3,605.6km^2$, which consists of 2 subbasins, 35 standard unit watersheds (Andong basin 18, Imha basin 17). As a evaluation of soil erosion potential using the spatial soil erosion map, total annual soil loss and soil loss per area estimated $2,013{\times}10^3Mg\;yr^{-1}$ (Andong basin 979, Imha basin 1,034) and $6.1Mg\;ha^{-1}yr^{-1}$ (Andong basin 6.0, Imha basin 5.2), respectively. 54.2% of soil loss was originated from Arable land (Andong basin 49.0%, Imha basin 59.0%), and the area of regions, graded as higher "Moderate" for annual soil loss, was $201.7km^2$ (Andong basin 84.9, Imha basin 116.8). Average soil loss per area of unit watersheds by classification according to soil dominant parent material types ranked "Sedimentary rock group" > "Mixed group" > "Metamorphic rock group" > "Igneous rock group". In conclusion, the results of this study inform that the classification of soil parent material type would be effective for soil erosion analysis and interpretation in the Upper Nakdong River Basin.

The Evaluation of Potential Invasive Species in the Gangneungnamdae Stream in Korea using a Fish Invasiveness Screening Kit (FISK (Fish Invasiveness Screening Kit)를 이용한 강릉남대천의 잠재적 침습 이입종 평가)

  • Kim, Jeong Eun;Lee, Hwang Goo
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.73-81
    • /
    • 2018
  • This study was conducted to understand the current status of the translocated species using a precede study and a model to evaluate the potential invasiveness that could adversely affect the aquatic ecosystem in the Gangneungnamdae Stream. A total of 12 translocated species were investigated and identified from 9 sites in a precede study, and steadily increased since 1982. For the study, which utilized research based on the total FISK (Fish Invasivenss Screening Kit) scores, all of the non-native fishes in Gangneungnamdae Stream were classified into two groups: namely as a high and a medium risk of becoming invasive. It was determined that there were two species (Zacco platypus and Pseudorasbora parva) that were determined to have posed the highest risk. The study determined that the mean scores were shown to have ranged from $3.06({\pm}0.16)-3.42({\pm}0.13)$. Consequently, the habitat analysis showed that the determined QHEI (Qualitative Habitat Evaluation Index) values in the stream averaged 146 (88-171), indicating that an optimal habitat condition did exist in that locale. It can be inferred that compared to land use in the surrounding watersheds, the QHEI values and frequency of translocated species showed the lower the altitude of stream, the QHEI values were decreased and in case of land use pattern, a noted decreased forest and grassland area, and gradually increased urbanized area was seen to exist in the region. The correlation between the fish assemblage, QHEI, land use pattern of surrounding watershed and number of translocated species was identified and analyzed when the stream altitude decreased, and the number of species was increased (r= - 0.782, p=0.0127), the number of species was decreased (r= - 0.737, p=0.0234), and finally when the QHEI values were decreased, it was noted that the urbanized area was increased (r=0.292, p=0.446). In the case of the number of translocated species, when the number of translocated species was increased, the associated urbanized area was increased.

Correlation of Nonpoint Pollutant and Particulate Matters at a Small Suburban Area (비시가화지역에서 비점오염물질과 입자성물질의 유출 상관성)

  • Park, Ji-Young;Bae, Sang-Ho;Yoon, Young-H.;Lim, Hyun-Man;Park, Jae-Roh;Oh, Hyun-Je;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.720-728
    • /
    • 2012
  • In general, nonpoint pollutant of a watershed is drained out in the form of storm water runoff during rainfall events. As the bulk of the nonpoint pollutant is in adsorbed form on particulate matters, in order to understand the behavior of nonpoint pollutant it is essential to grasp the characteristics of particulate matters in rainfall runoff. Though, previous studies for the relationship between the runoff characteristics of pollutants and the size distribution of particulate matters are very rare. In this study, a small non-urbanized area (basin area of 52.8 ha) with various landuse types including paddy, dry fields and forest was selected and investigated in detail for the runoff properties of each pollutant during several rainfall events. The correlation and effects between particulate matters and nonpoint pollutant were analyzed quantitatively. As a result, the significant first flush was observed on each event and it became clear that fine particulate matters ($80{\mu}m$ or less) has contributed in the runoff process of nutrients and heavy metals. Organic matters ($BOD_5$, TOC), nutrients (TN, TP) and several heavy metals (Al, Cr, Cu, Fe, Hg and Zn) represented high correlations with SS (total), VSS, SS (d < $20{\mu}m$) and SS ($20{\mu}m$ $$\leq_-$$ d < $80{\mu}m$). On the other hand, $COD_{cr}$, Cd, Mn and Pb did not show clear correlations with the behavior of particulate matters. Therefore, we have to examine the introduction of nonpoint pollution mitigation facilities considering the facts that nonpoint pollutant runoff process has high correlation with the behavior of particulate matters and is changeable based on the target pollutants.

Analysis of Soil Erosion Hazard Zone by Cropland (농경지 토양침식 위험지역 분석)

  • Kim, Kyung-Tak;Kim, Joo-Hun
    • Journal of Wetlands Research
    • /
    • v.7 no.1
    • /
    • pp.107-117
    • /
    • 2005
  • Soil erosion is influenced from a variety of factors such as rainfall distribution, soil type, land use, etc. This paper is aimed at analyzing the soil erosion hazard zone in cropland. RUSLE was used for an analysis of soil erosion amount, and for the spatial data of basin, soil erosion amount was calculated by extracting the respect topography space related factors of RUSLE using DEM, Landuse, Soil map as base map. This paper is targeting at the watershed of Gyeongan stream in Gyeonggi-do The result of an analysis of soil erosion amount showed that soil erosion occurred in the order of crop field(1210) planting area, orchard(1220), non-adjusted paddy fields(1120), and adjusted paddy fields(1110), and also the average soil erosion in these planting areas has the most amount in crop field planting area. As a result of analysis on soil erosion hazard zone of farm land by classifying it into 5 classes using the result of that result of analysis on the amount of soil erosion, in case of Class 5 in which the hazard of soil erosion is the highest, approximately 72.5ha that corresponds to 2.4% of the total farm land was decided as erosion hazard zone. For this erosion hazard zone, it was analyzed that dry field crop planting area was 72.4ha and orchard was 0.1ha, and Class 5 hazard zone did not appear in other farming areas. Also, it showed that Class II(1~50ton/ha/yr) area had the most ratio of the entire farm land, i.e., 70.2%, regardless of land use state. According to the result of analysis on soil erosion hazard zone of farm land by classifying it into 5 classes, the Class V has the highest soil erosion hazard, approximately 72.5ha that corresponds to 2.4% of the total farm land was estimated as an erosion hazard zone. This erosion hazard shows 72.4ha in dry field crop planting area, 0.1ha in an orchard, but the highest hazard zone, the Class V was not shown in other farming areas. Also, it showed that Class II area had the most ratio of the entire farm land, i.e., 70.2%, regardless of land use state.

  • PDF

Determination of Flood Reduction Alternatives for responding to climate change in Gyeongan Watershed (기후변화 대응을 위한 경안천 유역의 홍수저감 대안 선정)

  • Han, Daegun;Choi, Changhyun;Kim, Duckhwan;Jung, Jaewon;Kim, Jungwook;Kim, Soo Jun
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.154-165
    • /
    • 2016
  • Recently, the frequency of extreme rainfall event has increased due to climate change and impermeable area also has increased due to rapid urbanization. Therefore, we ought to prepare countermeasures for flood reduction to reduce the damage. To consider climate change, the frequency based rainfall was calculated according to the aimed period(reference : 1971~2010, Target period I : 2011~2040, Target period II : 2041~2070, Target period III : 2071~2100) and the flood discharge was also calculated by climate change using HEC-HMS model. Also, the flood elevation was calculated by each alternative through HEC-RAS model, setting 5 sizes of drainage pumps and reservoirs respectively. The flood map was constructed using topographical data and flood elevation, and the economic analysis was conducted for reduction of flood damage using Multi dimension - Flood Damage Analysis, MD-FDA. As a result of the analysis on the flood control effect, a head of drainage pump was reduced by 0.06m up to 0.44m while it was reduced by 0.01m up to 1.86m in the case of a detention pond. The flooded area shrunk by up to 32.64% from 0.3% and inundation depth also dropped. As a result of a comparison of the Benefit/Cost index estimated by the economic analysis, detention pond E in period I and pump D in period II and III were deemed appropriate as an alternative for climate change. The results are expected to be used as good practices when implementing the flood control works considering climate change.

Development of Domestic Rainwater Treatment System and its Application in the Field (소규모 빗물처리시설 개발 및 현장 적용성 평가 연구)

  • Pak, Gijung;Park, Minseung;Kim, Hwansuk;Lim, Yoonsoo;Kim, Sungpyo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • The increase of impervious area in cities caused the unbalanced water cycle system and the accumulated various contaminants, which make troubles as introducing into watershed. In Korea, most of rainfall in a year precipitate in a summer season. This indicate that non-point source pollution control should be more important in summer and careful rainfall reuse strategy is necessary. Accordingly, the aim of this study is to monitor the characteristics of rainfall contaminants harvested in roofs and to develop the rainfall treatment system which are designed to fit well in a typical domestic household including rain garden. The rain garden consists of peatmoss, gravel and san to specially treat the initial rainfall contaminants. For this purpose, lab scale experiments with synthetic rainfall had been conducted to optimize the removal efficiency of TN, TP and CODcr. After lab scale experiments, field scale rainfall treatment system installed as a pilot scale in a field. This system has been monitored during June to July in 2015 in four time rainfall events as investigating the function of time, rainfall, and pollutant concentrations. As results, high loading of pollutants were introduced to the rainfall treatment system and its removal efficiency is increased as increase of pollutant concentrations. Since it is common that the mega-size of rainfall treatment system is not attractive in urban area, small scale rainfall treatment system is promising to treat the non-point source contaminants from cities. In addition, this small scale rainfall treatment system could have a potential to water resue system in islands, which usually suffer the shortage of water.