• Title/Summary/Keyword: WALKING SPEED

Search Result 609, Processing Time 0.041 seconds

The Effect of Microcurrent Application on Muscle Fatigue of Pes Planus during Gait (미세전류 적용이 편평족을 가진 사람들의 보행근육 피로도에 미치는 영향)

  • Lee, Dae-Hwan;Son, Ho-Hee;Park, Soo-Jin;Kim, Jin-Sang;Kim, Kyoung
    • Journal of Korean Physical Therapy Science
    • /
    • v.18 no.2
    • /
    • pp.51-62
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the effect of microcurrent on fatigue of muscles in people who were flat-footed during gait. Methods: 10 flat-footed university students volunteered to participate in this study. 10 flat-footed subjects were divided into 2 groups, one group was experimental group of 5subjects(This group put on microcurrent induction shoes but the subjects were not able to feel the current.) and the other group was the control group of 5subjects(This group put on the general shoes which were similar in shape but microcurrent was not induced.) to perform double blind test and random sampling. Their gait muscle fatigue of 6 regions (vastus medialis, gastrocnemius, tibialis anterior, biceps femoris, erector spinae, and rectus abdominis muscle.) was measured by EMG MP150, Delsys Inc Boston, USA during walking and then they carried out the Harvard step with a platform (It was a arbitrarily made wooden platform of 100cm long, 50cm wide, 60cm high. They carried out climbing it for one second and descending it for one second by using the Metronome program, total 5minutes) for 5minutes. Right after that, the subjects walked on a treadmill at a speed of 4km/h for 10minutes and then their gait muscle fatigue of 6regions was assessed while they were walking on the ground as equally as before exercise. Results: The experimental group has resulted in lower average differences in gait muscle fatigue before and after exercise than those of the control group average 12.24Hz(P=0.009) at vastus medialis, average 8.52Hz(P=0.016) at gastrocnemius, average 9.16Hz(P=0.009) at tibialis anterior, average 8.66Hz(P=0.047) at biceps femoris, average 7.53Hz(P=0.016) at erector spinae, and average 7.80Hz(P=0.047) at rectus abdominis. All of the assessments of muscles have shown significant difference statistically. Conclusions: This result has shown that the use of micro current could decrease gait muscle fatigue of flat-footed people. It is recommended to use a microcurrent to reduce their gait muscle fatigue.

  • PDF

Analysis of Plantar Foot Pressure according to Insole Types during Treadmill Gait (트레드밀 보행시 인솔 형태 변화에 따른 족저압력 분석)

  • Woo, Jung-Hwi;Lee, Joong-Sook;Yang, Jeong-Ok;Lee, Bom-Jin;Bae, Kang-Ho;Han, Dong-Wook;Park, Sang-Muk;Bae, Jin-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.113-122
    • /
    • 2015
  • Objective : The purpose of this study was to analyze the foot-pressure distribution of 2D(2 dimensional form) & 3D(3 dimensional form; a customized arch-fit for posture correction) insoles for assessing their biomechanical functionality. Background : Recently there has been increased interest in both foot health and foot pain patients. Analysis of the plantar pressure was often used to solve the problems of the foot displayed by such people as rheumatoid arthritis patients. Method : Subjects who participated in this study were 17 female university students who had no previous injury experience in lower limbs and a normal gait pattern. The shoe size of all subjects was 240 mm. Two models of insoles of 2D(typical flat insole - 2 dimensional form) and 3D(special production - 3 dimensional form) were selected for the test. Using the Pedar-X system and Pedar-X insoles, 4.0 km/h of walking speed, and a compilation of 50 steps walking stages were used to analyze foot-pressure distribution. Results : Results of the foot-pressure distribution and biomechanical functionality on each insole were as follows; analyses of mean plantar pressure, maximum plantar pressure, maximum vertical GRF, and plantar pressure curve shape all showed overall low plantar pressure and GRF. Conclusion : This can be evaluated as an excellent insole for low levels on the plantar pressure and GRF. Therefore, it is possible to conclude that according to this analysis the 3D Customized Arch-fit Insole was better than 2D insole on the basis of these criteria.

Biomechanical Analysis of gait after seven month pregnant (임산부 보행의 역학적 분석)

  • Geum, Myung-Suk;You, Sil;Kim, Young-Nan;Chung, Nam-Ju;Han, Yoon-Soo;Lee, Hun-Pyo;Yoon, Hee-Joong
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.15-30
    • /
    • 2002
  • The purpose of this study was analyzed the effect of kinematical and kinetical factors of lower extremity of form change in the cause of growth an unborn child during in pregnancy. Three pregnant women were selected from pregnant 24 weeks as subjects. Each subjects were required to walk with usual walking speed. Cinematographic and GRF data were collected during walking, and the kinematical and kinetical variables were calculated using Kwon3d. Based on the results of the study, the following conclusions were drawn : 1. Step width and Step length The change of form during the period of pregnancy was not statistically found significant in the step width and the step length. 2. Angle of lower extremity 1) The change of form during the period of pregnancy was not statistically found significant in the hip angle at right heel contact, mid stance, but it was statistically found significant in the hip angle at toe off on p<.05. 2) The change of form during the period of pregnancy was not statistically found significant in the knee angle at right heel contact, mid stance, but it was statistically found significant in the knee angle at toe off on p<.05. 3) The change of form during the period of pregnancy was not statistically found significant in the ankle angle at right heel contact, mid stance, but it was statistically found significant in the ankle angle at toe off on p<.05. 3. Ground reaction force 1) The change of form during the period of pregnancy was statistically found significant in medial-lateral force(Fx) on p<.001. 2) The change of form during the period of pregnancy was not statistically found significant in post-anterior force(Fy). 3) The change of form during the period of pregnancy was statistically found significant in impulse force and minimum peak of vertical reaction force on p<.001, p<.01 but it was not statistically found significant in second maximum force.

Three-Dimensional Video Analysis of the Gate Patterns in Normal Children and Hemiplegic Children with Cerebral Palsy (정상아와 편마비 뇌성마비아의 삼차원 보행분석)

  • Lee Jin-Hee;Bae Sung-Soo;Kim Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.9 no.1
    • /
    • pp.127-145
    • /
    • 1997
  • The purpose of this study wa9 to analyse the gait patterns of two female children with hemiplegic cerebral palsy by using the three-dimensional video motion analysis technique. Case 1 has mild spastic hemiplegia on the right side while Case 3 has moderate spastic hemiplegia on the left side. A group of 10, normal female children of the same age(7-8 years old) were selected as the control group for comparison. Time and distance variables as well as the Center of Mass displacement, and the pelvic and joint motions in three anatomical planes were analysed for this purpose. The following observations were made through the analysis : Case 1 revealed an asymmetrical gait pattern in which the step length of the unaffected side was shorter than that of the affected side, which wan a result of the effort to minimize loading on the affected leg by shortening the swing phase of the unaffected leg. Case 1 scored similar phase ratios, cadence and walking velocity to the normal group. A slight posterior tilt of the pelvis was observed throughout the gait cycle. Less hip and knee flexion than the normal group was observed, and demonstrated hyperextension of the knee in the terminal stance phase. The main problem in case 1 originated from the insufficient dorsiflexion of the affected foot during the swing phase. Therefore, Case 1 has difficulty with foot clearance in the swing phase. Usually, this is compensated for by using exessive hip abduction and medial rotation in conjuction with trunk elevation as well as increased vortical displacement of the center of mass. Case 1 revealed a foot-flat initial contact pattern. Case 2 was characterized by a consistent retraction ef the affected aide of the body througout the gait cycle, As a result, an asymmetrical gait pattern with increased stance phase ratios of the unaffected side was observed. In spite of this the step lengths of both sieds were similar. Case 2 scored lower cadence and walking speed than the normal group with lower gait stability. The main problem in Case 2 originated from an excessive plantaflexion of the affected foot which, in turn, rebutted in high hip and knee flexion. Hyperextension of the knee was observed at mid-stance, and execessive anterior tilt of the pelvis throughout the gait cycle was noticed. A gait pattern with high hip abduction and medial circumduction was maintained for the stability in the stance phase and foot clearance in the swing phase. Case 2 revealed a forefoot-contact initial contact pattern.

  • PDF

Gait Phase Recognition based on EMG Signal for Stairs Ascending and Stairs Descending (상·하향 계단보행을 위한 근전도 신호 기반 보행단계 인식)

  • Lee, Mi-Ran;Ryu, Jae-Hwan;Kim, Sang-Ho;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.181-189
    • /
    • 2015
  • Powered prosthesis is used to assist walking of people with an amputated lower limb and/or weak leg strength. The accurate gait phase classification is indispensable in smooth movement control of the powered prosthesis. In previous gait phase classification using physical sensors, there is limitation that powered prosthesis should be simulated as same as the speed of training process. Therefore, we propose EMG signal based gait phase recognition method to classify stairs ascending and stairs descending into four steps without using physical sensors, respectively. RMS, VAR, MAV, SSC, ZC, WAMP features are extracted from EMG signal data and LDA(Linear Discriminant Analysis) classifier is used. In the training process, the AHRS sensor produces various ranges of walking steps according to the change of knee angles. The experimental results show that the average accuracies of the proposed method are about 85.6% in stairs ascending and 69.5% in stairs descending whereas those of preliminary studies are about 58.5% in stairs ascending and 35.3% in stairs descending. In addition, we can analyze the average recognition ratio of each gait step with respect to the individual muscle.

A Study on the Evacuation Behaviors of Children with Disabilities in Child Care Center through Evacuation Experiments (장애아전문어린이집 피난훈련을 통한 피난행태 분석 연구)

  • Lee, Jeong-Soo;Oh, Young-sook;Kwon, Yong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • This paper proposes architectural and evacuation recommendations through evacuation experiments of two child care centers with disabilities. To achieve these purposes, a survey on the architectural characteristics and evacuation experiments was carried out. The results were as follows: (1) the child care center with disabilities were located within one kilometer or five minutes from a fire station and 119 safety center, but the architectural characteristics and the ratio of self-moving children in a care center were very different conditions. (2) The evacuation behavior patterns of children with a disability were as follows: hugging a child by a teacher with the arms, walking with hugging and holding the child by a teacher, moving a wheelchair with a helper, and drag-out a cerebral palsied child with a mat wrapping. (3) The speed of the evacuation was fast in the following order: drag-out with a mat wrapping a child with a disability, hugging the child with the arms, walking with hugging and holding child, and moving with a wheelchair. In the case of difficulties in the vertical evacuation, a temporal evacuation area was essential for children with disability.

Development of Integrated Accessibility Measurement Algorithm for the Seoul Metropolitan Public Transportation System (서울 대도시권 대중교통체계의 통합 시간거리 접근성 산출 알고리즘 개발)

  • Park, Jong Soo;Lee, Keumsook
    • Journal of the Korean Regional Science Association
    • /
    • v.33 no.1
    • /
    • pp.29-41
    • /
    • 2017
  • This study proposes an integrated accessibility measurement algorithm, which is applied to the Seoul Metropolitan public transportation system consisting of bus and subway networks, and analyzes the result. We construct a public transportation network graph linking bus-subway networks and take the time distance as the link weight in the graph. We develop a time-distance algorithm to measure the time distance between each pair of transit stations based on the T-card transaction database. The average travel time between nodes has been computed via the shortest-path algorithm applied to the time-distance matrix, which is obtained from the average speed of each transit route in the T-card transaction database. Here the walking time between nodes is also taken into account if walking is involved. The integrated time-distance accessibility of each node in the Seoul Metropolitan public transportation system has been computed from the T-card data of 2013. We make a comparison between the results and those of the bus system and of the subway system, and analyze the spatial patterns. This study is the first attempt to measure the integrated time-distance accessibility for the Seoul Metropolitan public transportation system consisting of 16,277 nodes with 600 bus routes and 16 subway lines.

A Study on the Change of Traffic Accidents Around the Pedestrian Priority Zone (보행자 우선도로 개선 사업으로 인한 교통사고 변화에 대한 연구)

  • JANG, Jae-Min;LEE, Young-Ihn;KIM, Sukhee;CHOI, Hoi-Kyun
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.112-128
    • /
    • 2018
  • We are implementing pedestrian priority zone policy to certain districts to reduce greenhouse gas and to develop eco-friendly city which has more focus on pedestrians' walking environment. This policy has contributed to citizens' satisfaction level with improved public transportation service as well as more spacious streets for walk. Despite highly positive influence of pedestrian priority zone policy to the walking environment, we need to anticipate the impact of this to traffic environment as it may have bad effect to the overall traffic flow around the zone where the policy is implemented. This research has analyzed the change of characteristics of traffic accidents around the eco-traffic area of Hang-Gung dong, Suwon city, to understand impact of the pedestrian priority zone policy to the traffic surroundings, with pre-post analysis methodology. As a result, number of accidents related to pedestrians showed decrease as pedestrian priority zone is designed operated with focus to pedestrians. But accidents related illegal U-turn and violation of the traffic signal showed (significant) increase as there was a restriction of turns and decrease of overall traffic speed. To prevent the accidents above, we need to notice drivers to pay special attention before the pedestrian priority zone event, and information from this research should be given to the drivers through safety signs and mobile application at the place near to the event.

Effects of Respiratory Muscle Strengthening Training on Pulmonary Function in Persons with Stroke : A Preliminary Study (호흡근 강화훈련이 뇌졸중환자의 폐 기능에 미치는 영향)

  • Lee, Seong-Ran;Lee, Jeong-Min;Lee, Jung-Eun;Lee, Hea-Jung
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.4
    • /
    • pp.47-52
    • /
    • 2012
  • Purpose : The purpose of the study was to examine if a respiratory muscle strengthening training in patients with stroke can improve their pulmonary function. Methods : Volunteers were included for the study if a patient diagnosed stroke more than 6 months and had 24 points or higher in MMSE-K scores. Twenty-eight subjects participated in this study and were randomly divided into two groups; a breathing exercise group(n=14) and a control group(n=14). The intervention for all subjects was conducted for 20minutes, three times a week for 4 weeks. Subjects for the breathing exercise group had the respiratory muscle strengthening training using spiro-tigers, where-as subjects in the control group got their usual treatment ie a postural training. The six-minute walking test(6MWT) and the pulmonary function tests(FVC, $FEV_1$, $FEV_1$/FVC, VC, Vt, IRV and ERV) were employed to assess treatment effects at baseline and after their intervention. Results : Twenty-four subjects finished their 4-week treatment programs. The general characteristics between groups were found to be similar (p>0.05). The pulmonary function between groups were also observed no difference across groups at the baseline measurement (p>0.05). In the post treatment group comparison, subjects in the breathing exercise group showed an increase in lung function with VC ($2.73{\pm}0.80{\ell}$) and Vt ($0.87{\pm}0.38{\ell}$) than those in the control group ($1.91{\pm}0.80{\ell}$ and $0.48{\pm}0.22{\ell}$ respectively) (p<0.05). However, there was no difference found in 6MWT, FVC, $FEV_1$, $FEV_1$/FVC, IRV, and ERV across groups (p>0.05). Conclusion : A significant increase in VC and Vt was found in subjects with stroke, who had four-week training on respiratory muscle strengthening. However, respiratory muscle strengthening showed no effect on walking speed and FVC, $FEV_1$, $FEV_1$/FVC, IRV, and ERV in patients with stroke.

  • PDF

The Effects of Dynamic Functional Electrical Stimulation With Treadmill Gait Training on Functional Ability, Balance Confidence and Gait in Chronic Stroke Patients

  • Cho, Young-Ki;Ahn, Jun-Su;Park, Yong-Wan;Do, Jung-Wha;Lee, Nam-Hyun;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.21 no.4
    • /
    • pp.23-33
    • /
    • 2014
  • The aim of this study was to evaluate the effects of walking on a treadmill while using dynamic functional electrical stimulation (Dynamic FES) on functional ability and gait in chronic stroke patients. This was a prospective, randomized controlled study. Twelve patients with chronic stroke (>24 months) who were under grade 3 in dorsiflexor strength with manual muscle test were included and randomized into intervention (Dynamic FES) ($n_1$=7) and control (FES) ($n_2$=5). Both the Dynamic FES group and FES group were given a neuromuscular development treatment. The Dynamic FES group has implemented a total of 60 minutes of exercise treatment and gait training with Dynamic FES application. The FES group, with the addition of applying FES while sitting, has also implemented a total of 90 minutes of gait training on treadmill after the exercise treatment. Both two groups accomplished the program, twice a week, for a total of 24 times in a 12-week period. Exercise treatment, gait training on treadmill, and both Dynamic FES and FES were implemented for 30 minutes each. Korean version activities-specific balance confidence scale (K-ABC) was measured to determine self-efficacy in balance function. Timed up and go (TUG) test was performed to evaluate the physical performance. K-ABC, TUG, Berg balance scale (BBS), modified physical performance test (mPPT) and G-walk were evaluated at baseline and at 12 weeks. After 12 weeks, statistically significant differences (p<.05) were apparent in the Dynamic FES group in the changes in K-ABC and BBS. mPPT, TUG, gait speed, stride length and stance phase duration (%) were compared with the FES group. K-ABC had higher correlation to BBS, along with mPPT to TUG. Our results suggest that walking with Dynamic FES in chronic stroke patients may be beneficial for improving their balance confidence, functional ability and gait.