• 제목/요약/키워드: WADGPS

검색결과 20건 처리시간 0.017초

A Study on the Obtaining Navigation and Geo-Spatial Information Using WADGPS

  • Lee, Yong-Wook;Park, Joung-Hyun;Lee, Eun-Soo
    • Korean Journal of Geomatics
    • /
    • 제4권2호
    • /
    • pp.59-65
    • /
    • 2004
  • Recently, a lot of interest focuses on DGPS with which it is possible to obtain 3D geographic information in real time. There are some methods to transmit corrected signals which use ground based systems as beacon, as well as wireless and TV broadcasting media. However, these methods require a large number of stations. Therefore, when the distance from station to user is increased, there is a range limit to the transmission of corrected signals. In order to solve these problems, WADGPS method using Geo-satellite is being investigated. In this study, static and kinematic tests were performed by using Satloc SLX WADGPS and Ashtech receivers. The results showed that SA was affected most among corrected signals of WADGPS; it was followed by ionospheric delay, tropospheric delay and satellite orbit errors. The accuracy of static observation was approx. $\pm$1m on SA-on. This was ten times as accurate as that of absolute observation by common receiver on SA-off. In the SA-off, the accuracy of WADGPS can be improved further. The result of kinematic tests by WADGPS acted in concert with that of standard DGPS by C/A code. It was concluded that the application of W ADGPS could improve considerably navigation and the construction of geographic information.

  • PDF

Performance Analysis of WADGPS System for Improving Positioning Accuracy

  • So, Hyoungmin;Jang, Jaegyu;Lee, Kihoon;Park, Junpyo;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권1호
    • /
    • pp.21-28
    • /
    • 2016
  • The Wide Area Differential Global Positioning System (WADGPS) that uses a number of Global Navigation Satellite System (GNSS) reference stations are implemented with various types and provide services as it can service a wide range of areas relatively. This paper discusses a constellation design of reference stations and performance analysis of the WADGPS. It presented performance results of static and dynamic users when wide area correction algorithm was applied using eight reference stations.

Test Results of WADGPS System using Satellite-based Ionospheric Delay Model for Improving Positioning Accuracy

  • So, Hyoungmin;Jang, Jaegyu;Lee, Kihoon;Song, Kiwon;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권4호
    • /
    • pp.213-219
    • /
    • 2016
  • Most existing studies on the wide-area differential global positioning system (WADGPS) employed a grid ionosphere model for error correction in the ionospheric delay. The present study discusses the application of satellite-based ionospheric delay model that provides an error model as a plane function with regard to individual satellites in order to improve accuracy in the WADGPS. The satellite-based ionospheric delay model was developed by Stanford University in the USA. In the present study, the algorithm in the model is applied to the WADGPS system and experimental results using measurements in the Korean Peninsula are presented. Around 1 m horizontal accuracy was exhibited in the existing planar fit grid model but when the satellite-based model was applied, correction performance within 1 m was verified.

Test Results of Dual-Use Wide-Area Differential GPS System for Extending the Operational Coverage

  • Kap Jin Kim;Jae Min Ahn
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권3호
    • /
    • pp.307-314
    • /
    • 2023
  • Wide-Area Differential Global Positioning System (WADGPS) is a system that operates a number of reference stations to provide correction information to improve the accuracy of GPS users, and it is available to service users within the area where the wide-area reference stations are installed. Recently, as positioning information has been used in various applications, the need for WADGPS for precise navigation in long-distance spaced areas where the wide-area reference stations cannot be installed has been raised. This paper tested the user navigation performance outside the wide-area reference stations of the WADGPS system, which serves both GPS Precise Positioning Service (PPS) and Standard Positioning Service (SPS) users. Static and dynamic tests were conducted using vehicles, and as a result, position accuracy improvement through WADGPS was confirmed even at points hundreds of kilometers outside the network area of the wide-area reference stations. Through this, the performance of the PPS/SPS correction system and the possibility of expanding the service area were confirmed.

한국형 광역보정위성항법 개발에 관한 연구 (A Study on Developing Wide Area Differential GPS (WADGPS) in Korea)

  • 기창돈;신동호
    • 한국항행학회논문지
    • /
    • 제1권1호
    • /
    • pp.3-10
    • /
    • 1997
  • 최근 들어와 위성을 이용한 항법시스템인 GPS의 중요성이 점점 더 부각되고 있다. 미국을 위시로 유럽 등 각 대륙마다 자기들에 맞는 광역 보정위성항법 시스템을 구축하고 있다. 이에 우리나라도 우리나라에 맞는 광역보정위성항법을 구축해야 할 시점으로 보여지고 있는 시점이다. 기존의 보정위성항법이 반경 100km 정도를 포괄하여 넓은 영역에 서비스를 하기 위해서는 많은 수의 기지국이 필요한데 반해 광역보정위성항법은 적은 수의 기지국으로 넓은 영역을 포괄할 수 있는 장점을 지니고 있다. 이에 본 논문에서는 한국에 맞는 광역보정위성항법 구축을 위해서 모의 실험을 통해 한국을 포괄하는 광역보정위성 항법의 유효성을 검증하고 사용된 알고리즘에 대해 설명한다.

  • PDF

Performance Analysis of Korean WADGPS Algorithms with NDGPS Data

  • Yun, Young-Sun;Kim, Do-Yoon;Pyong, Chul-Soo;Kee, Chang-Don
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권1호
    • /
    • pp.44-51
    • /
    • 2005
  • To provide more accurate and reliable positioning and timing services to Korean nationwide users, the Ministry of Maritime Affairs and Fisheries of Korea is implementing Korean NDGPS (Nationwide DGPS), which is operational partly. And it also has a plan to construct WADGPS (Wide Area Differential GPS) system using sites and equipments of the NDGPS reference stations. For that, Seoul National University GNSS Laboratory is implementing and testing prototypes of WRS (Wide-area Reference Station) and WMS (Wide-area Master Station). Until now, because there are not enough installed WRSs to be used for computing wide area correction information, we cannot test algorithms of WMS with the data processed actually in WRSs. Therefore to evaluate the performance of the algorithms, we made a MATLAB program which can process RINEX (Receiver INdependent Exchange) format data with WADGPS algorithm. Using that program which consists of WRS, WMS and USER modules, we processed the data collected at NDGPS reference stations, which are saved in RINEX format. In WRS module, we eliminate the atmospheric delay error from the pseudorange measurement, smooth the measurement by hatch filter and calculate pseudorange corrections for each satellite. WMS module collects the processed data from each reference stations to generate the wide area correction information including estimated satellite ephemeris errors, ionospheric delays at each grid point, UDRE (User Differential Range Error), GIVE (Grid Ionosphere Vertical Error) and so on. In USER part, we use the measurements of reference stations as those of users and estimate the corrected users' positions and protection levels (HPL, VPL). With the results of estimation, we analyzed the performance of the algorithms. We assured the estimated UDRE /GIVE values and the protection levels bound the corresponding errors effectively. In this research, we can expect the possible performance of WADGPS in Korea, and the developed modules will be useful to implementation and improvement of the algorithms.

Performance Analysis of a Satellite-Based Ionosphere Model for WADGPS under Disturbed Ionosphere Condition

  • So, Hyoungmin;Lee, Kihoon;Kim, Kapjin;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권4호
    • /
    • pp.225-232
    • /
    • 2019
  • The satellite-based ionospheric model consists of local first-order plane function parameters for individual satellites and provides excellent accuracy in the flat ionospheric environment of the Korean Peninsula. This paper analyzes the performance of such model under the rapid changes in the ionosphere. Rapid changes in the ionosphere were observed in Korea from September to October 2014, and a satellite-based ionosphere model was applied to Wide Area Differential GPS (WADGPS) to analyze the navigation performance and the performance of estimating ionospheric delay errors. After processing the test data, it was confirmed that there was a deterioration in navigation performance and extrapolation performance in low-latitude areas and analyzed the cause.

Test Results of Wide-Area Differential Global Positioning System with Combined Use of Precise Positioning Service and Standard Positioning Service Receiver

  • Kim, Kap Jin;Ahn, Jae Min
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권1호
    • /
    • pp.43-48
    • /
    • 2021
  • Most existing studies on the wide-area differential global positioning system (WADGPS) used standard positioning service (SPS) receivers in their observation reference stations which provide the central control station global positioning system (GPS) measurements to generate augmentation data. In the present study, it is considered to apply a precise positioning service (PPS) receiver to an observation reference station which is located in the threatened jamming area. Therefore, the reference station network consists of a PPS receiver based observation reference station and SPS receiver based observation reference stations. In this case, to maintain correction performance P1C1 differential code bias (DCB) should be compensated. In this paper, P1C1 DCB estimation algorithm was applied to the PPS/WADGPS system and performance test results using measurements in the Korean Peninsula were presented.

Wavelet을 이용한 광역보정위성항법을 위한 전리층 모델링 (Ionospheric Modeling using Wavelet for WADGPS)

  • 손경호;기창돈
    • 한국항행학회논문지
    • /
    • 제11권4호
    • /
    • pp.371-377
    • /
    • 2007
  • 전리층 지연은 보정위성항법시스템(DGPS), 위성항법시스템(GPS)을 이용한 시각동기화 및 광역보정위성항법시스템(WADGPS)의 주요한 오차원인이다. 이러한 전리층 지연은 위성 신호가 통과하는 전리층의 환경에 따라 달라지므로 일반적인 보정위성항법시스템의 기준국이 보정할 수 있는 사용자와의 거리는 약 100km로 제한된다. 따라서 광역보정위성항법의 경우 여러 기준국의 측정치를 이용하여 보정구간 전리층 전체를 모델링하여 보정정보를 단일 주파수 수신기 사용자들에게 보내주게 된다. 이를 위해 이미 기존의 격자 알고리즘이 구현되어 있으나 기존의 격자 알고리즘에서는 전리층에 자기폭풍현상이 일어났을 경우에 대한 대처와 정확도가 고려되지 않고 있다. 자기폭풍이 일어나면 수직전리층 값이 공간적으로 noisy한 분포를 나타내게 되기 때문에 격자 알고리즘으로의 경우 모델링의 정확도가 낮아지게 된다. 또한 정확도를 높이기 위한 다른 함수 기반 전리층 모델의 경우 자기 폭풍이 일어났을 때 보정정보 값의 연속성이 보장되지 않는다. 본 논문에서 제시하는 wavelet을 이용한 알고리즘은 보정정보의 개수가 같을 때 기존의 격자 알고리즘보다 더 높은 정확도를 보이며, 특히 자기폭풍이 왔을 때도 비교모델인 spherical harmonics 기반 알고리즘에 비해서도 정확도가 향상됨을 볼 수 있다. 또한 다른 함수기반 알고리즘의 경우 정확도는 높지만 전송해야하는 보정정보 값이 자기폭풍시에 불연속이 되는데 반해 본 알고리즘은 연속성이 보장된다. 따라서 본 알고리즘을 이용하면 자기폭풍시에도 적용가능함으로서 기존의 알고리즘들의 문제를 개선할 수 있다.

  • PDF