• 제목/요약/키워드: W.M(Weld Metal)

검색결과 25건 처리시간 0.025초

軟鋼 熔接熱影響部의 塑性變形擧動에 關한 硏究 II (A Study the Behavior of Plastic Deformation in Weld HAZ of Mild Steel)

  • 박창언;정세희
    • Journal of Welding and Joining
    • /
    • 제10권1호
    • /
    • pp.43-51
    • /
    • 1992
  • The plastic zone formed around a notch tip is important in analyzing the fracture toughness of structures and particularly weld cracks existed in the weld HAZ (heat affected zone) which produces local plastic deformation at the crack tip. Therefore, in order to analyze the fracture toughness in weld HAZ, it is necessary to investigate the new fracture toughness parameter $K_{c}$ $^{*}$ and critical plastic strain energy $W_{p}$ $^{c}$ according to the shape and size of the plastic zone. 1) If the temperature corresponding to $K_{c}$ $^{*}$=130kg-m $m^{-3}$ 2/ is determined, transition temperature $T_{tr}$ the magnitude of plastic zone size, and heat input change depending on the fracture toughness. The blunted amounts of the parent and weld HAZ show mild linear variation until .delta.=0.4mm and then increase very steeply there after. 2) The relation between the plastic strain energy( $W^{p}$ ) and transition temperature( $T_{*}$tr) in parent metal is more sensitive than that of weld HAZ. However, the plastic strain energy depends on the transition temperature, and thus the yield stress, .sigma.$_{ys}$ becomes an important parameter for plastic strain energy. 3) The critical plastic strain energy( $W_{p}$ $^{c}$ ) absorbed by the plastic zone at the notch tip indicated in case of parent metal: 60J/mm, in case of heat input(20KJ/cm): 75J/mm, in case of heat input(30KJ/cm); 50J/mmJ/mm.

  • PDF

Cu를 함유한 HSLA-100강 용접 열영향부의 미세 조직 및 인성 (Microstructure and Toughness of Weld Heat-Affected Zone in Cu-containing HSLA-100 steel)

  • 박태원;심인옥;김영우;강정윤
    • 열처리공학회지
    • /
    • 제8권1호
    • /
    • pp.53-64
    • /
    • 1995
  • A study was made to characterize the microstructures and mechanical properties of the base metal and the heat-affected zone(HAZ) in Cu-bearing HSLA-100 steel. The Gleeble thermal/mechanical simulator was used to simulated the weld HAZ. The relationship between microstructure and toughness of HAZ was studied by impact test, O. M, SEM, TEM, and DSC. The toughness requirement of military specification value was met in all test temperatures for the base metal. The decrease of HAZ toughness comparing to base plate is ascribed to the coarsed-grain and the formation of bainite. Obliquely sectioned Charpy specimens show that secondary crack propagate easily along bainite lath. Improved toughness(240J) at HAZ of $Tp_2=950^{\circ}C$ is due to the fine grain, and reasonable toughness(160~00J) in the intercritical reheated HZA is achieved by the addition of small amount of carbon which affects the formation of "M-A". Cu precipitated during ageing for increasing the strength of base metal is dissolved during single thermal cycle to $1,350^{\circ}C$ and is precipitated little on cooling and heating during subsequent weld thermal cycle. Thus, the decrease of toughness does not occur owing to the precipitation of Cu.

  • PDF

오비탈 용접법을 적용한 STS 316L 파이프 소재의 용접부 특성에 관한 연구 (A Study on the Welds Characteristics of Stainless Steel 316L Pipe using Orbital Welding Process)

  • 이병우;조상명
    • 동력기계공학회지
    • /
    • 제14권2호
    • /
    • pp.71-77
    • /
    • 2010
  • This paper was studied on microstructure, mechanical properties and corrosion characteristics of 316L stainless steel pipe welds was fabricated by orbital welding process. S-Ar specimen was fabricated by using Ar purge gas and S-$N_2$ specimen was fabricated by using $N_2$ purge gas. Ferrite was not detected in weld metal of S-$N_2$ specimen but the order of 0.13 Ferrite number(FN) was detected in weld metal of S-Ar specimen. Oxygen and Nitrogen concentration of S-$N_2$ specimen was higher than S-Ar specimen on HAZ and inner bead. The welds microstructural characteristics of S-Ar and S-$N_2$ specimens are similar. The microvickers hardness values of S-Ar and S-$N_2$ specimens welds were similar and average values of each regions were in the range of 174~194. The microstructures of S-Ar and S-$N_2$ weld metal were full austenite by primary austenite solidification. The Solidification structures of S-Ar and S-$N_2$ weld metal were formed directional dendrite toward bead center. The potentiodynamic polarization curve of STS 316L pipe welds exhibited typical active, passive, transpassive behaviour. Corrosion current density$(I_{corr.})$ and corrosion rate values of S-Ar specimen in 0.1M HCl solution were $0.95{\mu}A/cm^2$ and $0.31{\mu}A$/year respectively. The values of S-$N_2$ specimen were $1.4{\mu}A/cm^2$ and $0.45{\mu}m$/year.

저항복비·고강도 구조용 내화강의 피로특성 및 비파괴평가 (Fatigue Characteristics and its Nondestructive Evaluation of Fire-resistance Steel for Construction with Low Yield Ratio and High Strength)

  • 김현수;남기우;강창룡
    • 열처리공학회지
    • /
    • 제14권4호
    • /
    • pp.212-219
    • /
    • 2001
  • The fatigue test was carried out to evaluate the fatigue characteristics of fire resistance steel for frame structure and heat affected zone (HAZ) by the one side Gas Metal Arc Welding (GMAW). In this paper, the fatigue crack growth behavior was investigated with the compact tension specimen of base metal and the HAZ according to chemical composition and rolling end temperature, respectively. And the acoustic emission signals obtained from the fatigue test were analyzed by the time-frequency analysis method as a nondestructive evaluation. Main results obtained are summarized as follows; The hardness was appeared softening phenomenon that weld metal and HAZ are lower than that of base metal. Fatigue life of welded specimen was longer than that of base metal. m was 3~4.5 in base metal and 3.8~5.8 in HAZ. The main frequency range of acoustic emission signal analyzed from time-frequency method is different with the range by noise and crack. Also, it could be classified that it was also generated by fracture mechanics of dimple, inclusion etc.

  • PDF

발전설비 강 용접부의 크리프 특성 평가 기술 개발 (Development of Creep Properties Evaluation Technique for Steel Weldment of Power Plant)

  • 이동환;정영훈;백승세;하정수;송기욱;이송인;유효선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.180-185
    • /
    • 2001
  • In the life assessment for plant structural component, the research on deterioration of toughness and material properties occurred in weldments has been considered as very important problems. In general, the microstructures composed in weldments are hugely classified with weld metal(W.M), fusion line(F.L), heat affected zone(HAZ), and base metal(B.M). It has been reported that the creep characteristics on weldments having variable microstructures could be unpredictably changed. Furthermore, it is also known that HAZ adjacent to F.L exhibits the decreased creep strength compared to those in base or weld metals, and promotes the occurrence of Type III and Type IV cracking due to the growth of grains and the coarsening carbides precipitated in ferritic matrix by welding and PWHT processes. However, the lots of works reported up to date on creep damage in power plant components have been mostly conducted on B.M and the creep properties on a localized microstructures in weldments have not as yet been throughly investigated. In this paper, for various microstructures such as coarse grain HAZ(CGHAZ), W.M and B.M in X20CrMoV121 steel weldment, the small punch-creep(SP-Creep) test using miniaturized specimen(t=0.5mm, 0.25mm) is performed to investigate a possibility for creep characteristics evaluation.

  • PDF

이종재료 레이저 용접 판재의 저주기 피로 특성 (The Low Cycle Fatigue Behavior of Laser Welded Sheet Metal for Different Materials)

  • 김석환;곽대순;김웅찬;오택열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.627-631
    • /
    • 2005
  • In this study, low fatigue behavior of laser welded sheet metal were investigated. Before welding, the cross section of butt joint was prepared only by fine shearing without milling process. Specimens were same sheet metal and welding condition that using automobile manufacturing company at present. Butt joint of cold rolled sheet metal was welded by $CO_2$ laser. It is used that welding condition such as laser welding speed was 5.5m/sec and laser output power was 5kW for 0.8mm and 1.2mm sheet metal. The laser weldments were machined same or different thickness and same or different material. In order to mechanical properties of around welding zone, hardness test was performed. Hardness of welding bead is about 2 times greater than base material. We performed the low cycle fatigue tests for obtaining fatigue properties about thickness and the weld line direction of specimen. The results of strain controlled low cycle fatigue test indicate that all specimens occur cyclic softening, as indicated by the decrease in stress to reach a prescribed strain.

  • PDF

실드 수중용접의 교계에 관한 연구 (Study on Effect of Underwater Shield Welding)

  • 김민남;오세규;서강태;박정배
    • 한국해양공학회지
    • /
    • 제5권1호
    • /
    • pp.81-87
    • /
    • 1991
  • In this paper, an attempt has been taken for improving the weldability of wer welds of TMCP steel plate by shielding around weld arc surroundings. The principal results of this experimental investigation can be summarized as follows: 1) The cooling rates resulting from wet wlds with the developed electrode on TMCP steel plate could be lower than that of the non-shieled wet welds. 2) The metallurgical characteristics in umderwater wet welds of TMCP steel plate and the developed electrode could be improved by shielding around weld arc surroundings.

  • PDF

AZ61 필러 와이어를 첨가한 AZ31B-H24 마그네슘 합금의 레이저 용접 (Laser Welding of AZ31B-H24 Mg Alloy with AZ61 Filler Wire)

  • 류충선;방국수;이목영;장웅성
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.54-58
    • /
    • 2008
  • Laser welding with AZ61 filler wire was carried out to improve formability though reduction of porosity and formation of under fill bead. Optimum welding condition and mechanical properties of butt joint for $400{\times}500{\times}1.3mm$ magnesium sheets were studied. Optimal welding conditions of laser power, welding speed, and defocusing length are 1000W, 3m/min, and 2mm, respectively. Results of tensile test indicated that both tensile strength and elongation of specimens welded with filler wire were improved at room temperature because of reduction of porosity and under-filled bead formation in addition to the precipitation hardening and microstructure refinement by Al-Mn and Mg-Al-Zn precipitates. At elevated temperature of $200{\sim}350^{\circ}C$, fracture location of tensile specimen was shifted from weld metal to base metal, indicating less softening of weld metal than base metal.

ERW 강관 용접부의 홈부식거동에 미치는 입열량의 영향 (The Effect of Heat Input on Grooving Corrosion Behavior in the Welds of Electric Resistance Welding Steel Pipe)

  • 이병우;이재식;박화순
    • 동력기계공학회지
    • /
    • 제11권3호
    • /
    • pp.41-46
    • /
    • 2007
  • The microstructure and electrochemical analysis of welds of electric resistance welding(ERW) pipe were investigated. The direction of metal flow line in HAZ of ERW pipe shifted to the inner(or outer) surface of pipe by plastic deformation during welding. The lowest heat input welds of ERW pipe was showed crack by liquid penetrant testing. Accelerated corrosion test by constant current density of 20mA/$cm^{2}$ developed groove at the welds of ERW pipe and the measured grooving factors were about $1.2{\sim}1.5$. Corrosion potential of base metal obtained by cyclic polarization in artificial sea water(3.5wt.% NaCl solution) was 100mV higher than that of weld metal of ERW pipe.

  • PDF

Study on the Performance of Laser Welded joint of Aluminum alloys for Car Body

  • Kutsuna, Muneharu;Kitamura, Shuhei;Shibata, Kimihiro;Salamoto, Hiroki;Tsushima, Kenji
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.620-625
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired for car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. ill the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6N01 alloy welds. Aluminum alloy plate of 2.0mm in thickness with filler metal bar was welded by twin beam Nd:YAG laser facility (total power:5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 l/min was used. The defocusing distance is kept at 0 mm. At travel speeds of 3 to 9 m/min and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF