• 제목/요약/키워드: W-Ag electric contact

검색결과 3건 처리시간 0.019초

Ag 코팅한 W-Ag 전기접점/Cu 모재간의 브레이징 접합 특성 (Brazing Adhesion Properties of Ag Coated W-Ag Electric Contact on the Cu Substrate)

  • 강현구;강윤성;이재성
    • 한국분말재료학회지
    • /
    • 제13권1호
    • /
    • pp.18-24
    • /
    • 2006
  • The brazing adhesion properties of Ag coated W-Ag electric contact on the Cu substrate have been investigated in therms of microstructure, phase equilibrium and adhesion strength. Precoating of Ag layer ($3{\mu}m$ in thickness) on the $W-40\%Ag$ contact material was done by electro-plating method. Subsequently the brazing treatment was conducted by inserting BCuP-5 filler metal (Ag-Cu-P alloy) layer between Ag coated W-Ag and Cu substrate and annealing at $710^{\circ}C$ in $H_2$ atmosphere. The optimum brazing temperature of $710^{\circ}C$ was semi-empirically calculated on the basis of the Cu atomic diffusion profile in Ag layer of commercial electric contact produced by the same brazing process. As a mechanical test of the electric contact after brazing treatment the adhesion strength between the electric contact and Cu substrate was measured using Instron. The microstructure and phase equilibrium study revealed that the sound interlayer structure was formed by relatively low brazing treatment at $710^{\circ}C$. Thin Ag electro-plated layer precoated on the electric contact ($3{\mu}m$ in thickness) is thought to be enough for high adhesion strength arid sound microstructure in interface layer.

방전플라즈마 소결법으로 제조된 Ta-Cu의 미세조직 및 전기접점 특성 (Microstructure and Electric Contact Properties of Spark Plasma Sintered Ta-Cu Composite)

  • 주원;김영도;심재진;최상훈;현승균;임경묵;박경태
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.377-383
    • /
    • 2017
  • Microstructure, electric, and thermal properties of the Ta-Cu composite is evaluated for the application in electric contact materials. This material has the potential to be used in a medium for a high current range of current conditions, replacing Ag-MO, W, and WC containing materials. The optimized SPS process conditions are a temperature of $900^{\circ}C$ for a 5 min holding time under a 30 MPa mechanical pressure. Comparative research is carried out for the calculated and actual values of the thermal and electric properties. The range of actual thermal and electric properties of the Ta-Cu composite are 50~300 W/mk and 10~90 %IACS, respectively, according to the compositional change of the 90 to 10 wt% Ta-Cu system. The results related to the electric contact properties, suggest that less than 50 wt% of Ta compositions are possible in applications of electric contact materials.