• 제목/요약/키워드: W chromosome

검색결과 95건 처리시간 0.029초

Identification of Female Specific Genes in the W Chromosome that are Expressed during Gonadal Differentiation in the Chicken

  • Rallabandi, Harikrishna Reddy;Yang, Hyeon;Jo, Yong Jin;Lee, Hwi Cheul;Byun, Sung June;Lee, Bo Ram
    • 한국가금학회지
    • /
    • 제46권4호
    • /
    • pp.287-296
    • /
    • 2019
  • Avian sex determination system involves the male ZZ and female ZW chromosomes. However, very few studies are reported the expression, functional role and importance of genes on the W chromosome because of its small and highly heterochromatic genomic regions. Recent studies demonstrated that the W chromosome may have critical roles in physiology, sex determination and subsequent sexual differentiation in chickens. Therefore, gene annotation, including describing the expression and function of genes in the chicken W chromosome, is needed. In this study, we have searched the W chromosome of chickens and selected a total of 36 genes to evaluated their specific expression in the testis and ovary at various developmental stages such as embryonic day 6 (E6), hatch and adult. Interestingly, out of 36 genes in chicken W chromosome, we have found seven female-specific expression at E6.5 day, indicating that they are functionally related to female chicken gonadal differentiation. In addition, we have identified the stage specific gene expression from the sex specific genes. Furthermore, we analyzed the relative location of genes in the chicken W chromosome. Collectively, these results will contribute molecular insights into the sexual determination, differentiation and female development based on the W chromosome.

Creation of an Ethanol-Tolerant Yeast Strain by Genome Reconstruction Based on Chromosome Splitting Technology

  • Park, A-Hwang;Sugiyama, Minetaka;Harashima, Satoshi;Kim, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.184-189
    • /
    • 2012
  • We sought to breed an industrially useful yeast strain, specifically an ethanol-tolerant yeast strain that would be optimal for ethanol production, using a novel breeding method, called genome reconstruction, based on chromosome splitting technology. To induce genome reconstruction, Saccharomyces cerevisiae strain SH6310, which contains 31 chromosomes including 12 artificial mini-chromosomes, was continuously cultivated in YPD medium containing 6% to 10% ethanol for 33 days. The 12 mini-chromosomes can be randomly or specifically lost because they do not contain any genes that are essential under high-level ethanol conditions. The strains selected by inducing genome reconstruction grew about ten times more than SH6310 in 8% ethanol. To determine the effect of mini-chromosome loss on the ethanol tolerance phenotype, PCR and Southern hybridization were performed to detect the remaining mini-chromosomes. These analyses revealed the loss of mini-chromosomes no. 11 and no. 12. Mini-chromosome no. 11 contains ten genes (YKL225W, PAU16, YKL223W, YKL222C, MCH2, FRE2, COS9, SRY1, JEN1, URA1) and no. 12 contains fifteen genes (YHL050C, YKL050W-A, YHL049C, YHL048C-A, COS8, YHLComega1, ARN2, YHL046W-A, PAU13, YHL045W, YHL044W, ECM34, YHL042W, YHL041W, ARN1). We assumed that the loss of these genes resulted in the ethanol-tolerant phenotype and expect that this genome reconstruction method will be a feasible new alternative for strain improvement.

오골계의 염색체 분염법 (G-banding)에 따른 핵형분석에 관한 연구 (The Study of G- Banding Chromosome in Silkie)

  • 강태석;오봉국;손시환
    • 한국가금학회지
    • /
    • 제12권2호
    • /
    • pp.83-87
    • /
    • 1985
  • This experiment was carried out to identify the chromosomes of silkie. It was many difference from other breeds in morphology and characteristics. In this experiment, chromosomal analysis was used early embryos. In aspect of morphological chromosomes, chromosomal size and shape are similar to other breeds. The chromosomes of silkie were shown to morphlogy as follows. They were identified that chromosome #l and #2 were grouped as submentacentric, #3, #5 and #6 were telocentric #4 and #7 were acrocentric and #8 was metacentric chromosome. Zㆍsex chromosome was shown 5th, W-sex chromosome was 8th to 9th and they were metacentric chromosome, respectively. Each chromosome through the G-banding was shown the 3 dark bands in 1 p2, distinct light band in 1p1, dark band in 2p2, broad light band in 3pl, dark band from centromere and distal part in 4th chromosome and dark band in 5pl. Z-sex chromosome was shown dark at p-arm distal part.

  • PDF

Screening and Cloning of RAPD Markers from the W Chromosome of Silkworm, Bombyx mori L.

  • Chen, Keping;Zhang, Chunxia;Yao, Qin;Xu, Qinggang;Tang, Xudong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제8권2호
    • /
    • pp.161-167
    • /
    • 2004
  • Silkworms sex determination drew high attention from researchers. Sex chromosomes on the silkworm are of ZW type for females and ZZ type for males. Chromosome W plays an important role in sex determination. Although several molecular linkage maps have been constructed for silkworm, very few markers are discovered on the W chromosome. In order to look for molecular markers and to further locate the Fern gene on chromosome W, we used genomic DNA from both female and male larvae of a silkworm strain named 937 as PCR templates for RAPD amplification with 200 arbitrary 10-mer primers. The amplification results showed three female-specific bands, namely ${OPG-07_496}, {OPC-15_1,660} and {OPE-18_1,279}$. Further verification, however, revealed no band from OPG-07 and OPC-15 in either sex in the strain 798, but OPE-18 provided female-specific band in the strains Suluan7 and C108, and absent in both males and strain 798. This indicates that the bands from ${OPG-07_496} and {OPC-15_1,660}$ are probably female-specific in strain 937, and the band from OPE-18 was probably amplified from a common segment shared by most strains. The genomic DNAs from OPG-07 and OPC-15 were cloned and sequenced. Sequence analysis showed that the DNAs from OPG-07 and OPC-15 have high identities with the retrotransposable elements, and DNA from OPC-15 contains a portion of sequence which probably encodes an eukaryotic translation initiation factor 4E binding protein (eIF4EBP).

Rat의 DNA Polymerase$\beta$ cDNA가 도입된 Transgenic Drosophila의 체세포 돌연변이 유발에 관한 연구 (Hypersensitivity of Somatic Mutations and Mitotic Recombinations Induced by Mutagens in Transgenic Drosophila bearing Rat DNA Polymerase $\beta$)

  • 최영현;유미애;이원호
    • 한국환경성돌연변이발암원학회지
    • /
    • 제15권2호
    • /
    • pp.100-105
    • /
    • 1995
  • The effects of DNA polymerase $\beta$ on the somatic chromosome mutations and mitotic recombinations were investigated using the transgenic Drosophila beating chimetic gene consisting of a promoter region of Drosophila actin 5C gene and rat DNA polymerase $\beta$. For detecting the somatic chromosome mutations and mitotic recombinations, the heterozygous (mwh/+) strains possessing or lacking transgene poi 13 were used. The spontaneous frequency of small mwh spots, due to deletion or nondisjunction etc., in the non-transgenic w strain and the transgenic p[pol $\beta$]-130 strain was 0.351 and 0.606, respectively. The spontaneous frequency (0.063) of large mwh spots, arises mostly from somatic recombination between the centromere and the locus mwh, in the transgenic p[pol $\beta$]-130 strain was about three times higher than that (0.021) of the non-transgenic w strain. The mutant clone frequencies of small and large mwh spots induced by N-methyl-N'-nitro-N-nitrosoguanidine and ethyl methanesulfonate in the transformant p[pol $\beta$]-130 were higher than those in the host strain w. The present results suggest that rat DNA polymerase $\beta$ participate at least in the somatic chromosome mutations and mitotic recombination processes.

  • PDF

Comparative RFLP Analysis of Chromosome 2M of Aegilops comosa Sibth et Sm. Relative to Wheat (T. aestivum L.)

  • Park, Y. J.;Shim, J. W.
    • 한국작물학회지
    • /
    • 제43권2호
    • /
    • pp.120-123
    • /
    • 1998
  • Based on the co-linearity in the Triticeae, comparative RFLP analysis of 2M chromosome of Ae. comosa Sibth et Sm. was performed with 2MS and 2M additional lines of Triticum aestivum L. cv. Chinese Spring. Among the wheat RFLP probes conserved in the short arms of wheat chromosome 2, those above psr912 were located on the long arms of 2M in Aegilops comosa. The rest probes on the short arm and all the probe sequences on the long arm of group 2 chromosome in wheat were conserved on the equivalent chromosomal position in Aegilops comosa. So, it is apparent that some chromosomal segment from the short arm had been transferred to long arm while reconstructing 2M chromosome relative to wheat chromosomes. The break-point was located between psr912 and psr131 of the short arm. This rearrangement of chromosome 2M might be a molecular evidence of the M genome speciation from an ancestral type.

  • PDF

닭의 성특이적 DNA 분리 (Identification of Sex-Specific DNA Sequences in the Chicken)

  • 송기덕;신영수;한재용
    • 한국가금학회지
    • /
    • 제20권4호
    • /
    • pp.177-188
    • /
    • 1993
  • 닭에서 적절한 성감별 방법을 개발하고 닭의 성분화 기작의 기초자료를 얻기 위하여 배아의 섬유아세포의 염색체를 분석하고, W 염색체 특이적인 반복염기서열과 50∼60%의 유사성을 보이는 random primer로 PCR 증폭을 실시하여 성을 판별하는 방법이 이용되었으며, 닭에서 성분화에 관련된 유전자를 분리하기 위해 W 염색체 특이적인 반복염기서열을 클로닝하였고, PCR을 이용하여 ZFY와 SRY 염기서열을 증폭하였다. 닭의 배아섬유세포의 염색체 분석 결과 Z 염색체와 W 염색체를 구분함으로써 배아의 성을 직접적으로 판별하는 것이 가능하였으며 , 암닭의 DNA를 Xho Ⅰ와 Eco RI로 절단하여 생성되는 band를 이용하여 성을 판별하는 것이 가능하였다. Xho Ⅰ와 Eco RI family를 클로닝하고, colony hybridization을 통해 Xho Ⅰ과 염기서열이 유사한 80∼100개의 clone을 동정하여, 이들 두 그룹간 DNA homology는 매우 유사하였다. 150개의 random primer 중 W 염색체 특이적인 반복 염기서열과 유사성을 보이는 primer 7개를 screening하였으며, 이 중 3개의 primer는 닭에서 자성과 웅성간의 차이를 나타내었다. 닭에서 성분화에 관련된 유전자를 동정하기 위하여 포유류의 ZFY와 SRY유전자의 PCR증폭을 실시하였다. ZFY를 증폭한 결과, 자성과 웅성간의 차이를 발견할 수 없었으며, 이는 닭에서 ZFY는 상염색체 또는 Z 염색체에 존재함을 시사한다. SRY의 증폭에서는 성간의 차이가 확인되었으나, 이 유전자가 Z 염색체에 존재하는지 W 염색체에 존재하는지 혹은 상염색체 존재하는지 여부는 연구가 필요하리라 사료된다.

  • PDF

Rapid Sex Identification of Chicken by Fluorescence In Situ Hybridization Using a W Chromosome-specific DNA Probe

  • Sohn, S.H.;Lee, C.Y.;Ryu, E.K.;Han, J.Y.;Multani, A.S.;Pathak, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권11호
    • /
    • pp.1531-1535
    • /
    • 2002
  • It has been known that the sex of chicken cells can be most accurately identified by fluorescence in situ hybridization (FISH). However, the presently available FISH has not been widely used for sex identification, because the procedures for cell preparation and FISH itself are complicated and time-consuming. The present study was undertaken to test a rapid FISH procedure for sexing chicken. A FISH probe was simultaneously synthesized and labeled with digoxigenin by polymerase chain reaction (PCR) targeting a 416 bp segment of the 717 bp XhoI family fragment which is repeated over 10 thousand times exclusively in the W chromosome. Sexing by FISH was performed on cytological preparations of early embryos, adult lymphocytes and feather pulps of newly hatched chicks. The DNA probe hybridized to all types of uncultured interphase as well as metaphase female but not male cells that had been examined. Moreover, consistent with the known site of the XhoI family, the hybridization signal was localized to the pericentromeric region of the W chromosome. We, therefore, conclude that the present PCR-based FISH can be used as a rapid and reliable sex identification procedure for chicken.

신경회로망을 이용한 염색체 영상의 최적 패턴 분류기 구현 (Implementation on Optimal Pattern Classifier of Chromosome Image using Neural Network)

  • 장용훈;이권순;정형환;엄상희;이영우;전계록
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.290-294
    • /
    • 1997
  • Chromosomes, as the genetic vehicles, provide the basic material for a large proportion of genetic investigations. The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, we propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of two-step multi-layer neural network(TMANN). We are employed three morphological feature parameters ; centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.), as input in neural network by preprocessing twenty human chromosome images. The results of our experiments show that our TMANN classifier is much more useful in neural network learning and successful in chromosome classification than the other classification methods.

  • PDF