• Title/Summary/Keyword: W/G Antenna Transition Loss

Search Result 2, Processing Time 0.02 seconds

HPA MMIC to W/G Antenna Transition Loss Analysis and Development Results of W-band Transmitter Module

  • Kim, Wansik;Jung, Juyong;Lee, Juyoung;Kim, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2019
  • This paper will read about a multichannel frequency-modulated continuous wave (FMCW) radar sensor with switching transmit (TX) antennas is developed at W-band. To achieve a high angular resolution, a uniform linear array consisting of 5 switching-TX and 12 receive (RX) antennas is employed with the digital beamforming technique. The overall radar front-end module comprises a W-band transceiver and TX/RX antennas. A multichannel transceiver module consists of 5 up-conversion and 12 down-conversion channels, where one of the TX channels is sequentially switched ON. For developing transmitter, we developed an HPA (high power amplified) MMIC chip for W-band radar system and fabricated a transmitter module using this chip. In order to develop the W-band transmitter, we analyzed the important antenna transition structure from HPA MMIC line to W/G (Waveguide)antenna via M/S(microstrip) and fabricated it with 5 transmission channels. As a result, the output power of the transmitter was within 1 dB of the error range after analysis and measurement under normal temperature and environmental conditions.

Analysis and Development Results of W-band Transceiver Module using Open MMIC Chips (국내개발 MMIC칩을 적용한 W-Band 송수신모듈의 분석 및 제작 결과)

  • Kim, Wansik;Jung, Jooyong;Kim, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.163-168
    • /
    • 2018
  • We developed W-band transceiver module using open MMIC chip such as receiver single chip and transmitting power amplifier. In order to calculate the noise figure and output power value, we analyzed the W-band transition loss from the antenna to MMIC connection and constructed the 12 channel receiver and the 5 channel transmitter. And compared with the results of the measurement. As a result, the output power of the transmitter was similar to the analytical results and the measured results at room temperature and environmental conditions. The noise figure of the receiver was also similar, but some channels showed error of about 3 dB due to manufacturing error.