• Title/Summary/Keyword: W/C Ratio

Search Result 1,776, Processing Time 0.032 seconds

The Study on Earlier Evaluation of Concrete Strength Using Electric Resistance Method (전기 저항법을 이용한 콘크리트 조기 강도 판정에 관한 연구)

  • 김화중;이도현;윤상천;박정민;최신호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.130-135
    • /
    • 1995
  • We can consider that the study on early evaluation of strength of concrete is useful to raise safety of building and utility of quality control of concrete is useful to raise safety of building and utility of quality control of concrete. In this paper, was proposed to method early to predict strength of concrete with key parameters, such as Water/Cement(W/C) ratio and Sand / Aggregate(S/A) ratio. Through a series of experiment, the obtained results are summarized as follow. $\circled1$ The ratio of resistance was decteased as the increase of W/C ratio. $\circled2$ The maximum value for the ratio of resistance and compressive strength was presented in the case of 40% S/A ratio. $\circled3$ The relationship. of the ratio of resistance and compressive strength on 28days according to the change of W/C and S/A ratio is to be: $F_{28}=-0.00104R^2 + 2.263R - 935.5$ (W/C Ratio) $F_{28} = 0.007R^2 - 10.693R - 4269.1$ (S/A Ratio)

  • PDF

Increase of treatment amount of thermophilic oxic process considering calorie/water (C/W) ratio (칼로리/수분 (C/W)비를 고려한 고온호기 처리법에서의 처리량 증가)

  • Jeon, Kyoung-Ho;Choi, Dong-Yoon;Song, Jun-Ik;Park, Kyu-Hyun;Kwag, Jung-Hoon;Kim, Jae-Hwan;Kang, Hee-Sul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.203-210
    • /
    • 2010
  • The signification of calorie/water (C/W) ratio was investigated in the treatment of highly concentrated organic wastes by thermophilic oxic process (TOP). Swine waste was used in this study. When C/W ratio was 1.6, most of swine waste was decomposed and all water was evaporated in the 24-h injection cycle. To improve treatment efficiency of TOP treating swine waste, the effect of shortening the swine waste injection cycle was examined. The shortening of injection cycle was conducted to stimulate the activity of thermophilic bacteria. A high temperature in the reactor was maintained by shortening of the injection cycle. When the swine waste injection cycle was shortened, the C/W ratio was fixed at 1.6. As a result, by shortening the swine waste injection cycle from 24-h to 12 and 6-h, the maximum loading rate of swine waste per day could be improved 1.9 and 3.5 times, respectively.

The Effects of Heat Treatment Temperature on Mechanical Property of 93W-6.3Ni-0.7Fe Heavy Alloy (93W-6.3Ni-0.7Fe 중합금에서 열처리온도에 따른 기계적 성질변화)

  • 김은표
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.42-49
    • /
    • 1998
  • A study on the improvement of the impact energy in 93W heavy alloy with a Ni/Fe ratio of 9/1 has been carried out as a function of heat treatment temperature. The obtained results were compared to that of the traditional alloy system in which the Ni/Fe ratio is 7/3 or 8/2. With increasing heat treatment temperature from 1150 to 125$0^{\circ}C$, the impact energy of the alloy with the Ni/Fe ratio of 9/1 is remarkably increased from 42 to 72 J, which is higher than that of traditional alloy, up to 118$0^{\circ}C$ and then saturated. Fracture mode was also changed from brittle W/W boundary failure to W cleavage. The temperature showing the dramatic shrinkage by dilatometric anaysis of the heavy alloy with Ni/Fe ratio of 9/1 was found to be 1483 $^{\circ}C$, which is higher than that (146$0^{\circ}C$) of the heavy alloy with Ni/Fe ratio of 7/3. Auger Electron Spectroscopy showed that the segregation of impurities, such as S, P, and C in W/W grain boundary was considerably decreased with increasing heat treatment temperature from 1150 to l18$0^{\circ}C$. From the above results, it was found that the impurity segregation in W/W grain boundary played an important role on the decrease of impact properties, and the heat treatment temperature should be appropriately chosen, as considering the Ni/Fe ratio of the alloy, in order to get good impact properties.

  • PDF

A Study on Synthesis and Mechanical Properties of (Ti.W)C Complex Carbide by SHS Chemical Furnace (SHS 화학로에 의한 (Ti.W)C 복탄화물의 합성 및 기계적 특성에 관한 연구)

  • 이형복;오유근;이풍헌;장동환
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.418-424
    • /
    • 1996
  • (Ti.W)C complex carbide was synthesized by self-propagating high temperature synthesis (SHS) chemical furnace. Attempt to find the optimal condition for synthesis of (Ti.W)C the effects of molar ratio of Ti:W:C on the synthesized powders and mechanical properties were investigated, Optimum molar ratio of these synthe-sized powder was Ti:W:C=0.7:0.2:1.0 The bulk density M,O.R Hardness Fracture toughness of (Ti.W)C complex carbide sintered at 200$0^{\circ}C$ for 60 min by hot-pressing under the pressure of 20 MPa were 7.6g/cm3, 475 MPa, 17,.7 GPa respectively.

  • PDF

Influence of Paste Fluidity and Vibration Time for Fundamental Properties of Porous Concrete (시멘트체이스트의 유동성 및 진동다짐시간이 포러스콘크리트의 기초물성에 미치는 영향)

  • 이성일;유범재;장종호;김재환;백용관;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.311-316
    • /
    • 2001
  • This study analyzed the influence of paste fluidity and vibration time for fundamental properties of porous concrete. Results of this study were shown as follows; 1) Even if target void ratio is same, void ratio and compressive strength of porous concrete is different according to w/c, paste flow and vibration time. So, In case of target void ratio, we must consider the influence of w/c, paste flow, and vibration time. 2) Though w/c and vibration time are same, as paste flow increase, all void ratio, continuous void ratio, and compressive strength decrease and difference between upper and lower void ratio increase. 3) Though w/c and paste flow are same, as vibration time increase, all void ratio and continuous void ratio decrease and difference between upper and lower void ratio increase. Also, compressive strength increase by 10 seconds and decease after 10 seconds. 4) As types of superplasticizer is different, all void ratio, continuous void ratio, and compressive strength are different. So, we must give consideration to paste fluidity and vibration time in order that increase of strength of porous concrete and distribution of uniform void.

  • PDF

A Study on the Dry-Shrinkage Properties For Floor Mortar With Crack-Reducing (균열저감형 바닥마감전용 모르터의 건조수축특성 연구)

  • 이종렬;이웅종;채재홍;박경상;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.175-180
    • /
    • 1999
  • The heating system of korea apartment house is called Ondol. The surface finishing mortar of this floor system typically used the cement based mortar, where the surface finishing mortar easily appears the crack. To order to crack control, the cement that added expansive additive used to reducing dry-shrinkage. For the surface finishing mortar, the types of shrinkage is known as plastic shrinkage, dry-shrinkage and autogenous This experimental study is to investigate the difference on dry-shrinkage of the cement that added expansive additives and OPC. The test method is varied the ration of water/cement (W/C) and the ratio of sand/cement(S/C). For OPC, The increase of the ratio of S/C is reduced dry-shirnkage but for the cement that added expansive additives, the increase of the ratio of S/C is augmented dry-shrinkage For OPC, The increase of the ratio of W/C is augmented dry-shrinkage but for the cement that added expensive, the increased of the ratio of W/C is reduced dry-shrinkage.

  • PDF

Evaluation of strength characteristics of cement-stabilized soil using the electrical resistivity measurement

  • Kean Thai Chhun;Chan-Young Yune
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.261-269
    • /
    • 2023
  • In this study, the compressive strength of cement stabilized soil was predicted using the electrical resistivity measurement. The effects of the water to cement (w/c) ratio and recovered Carbon Black (rCB) contents were examined. A series of electrical resistivity and compressive strength tests were conducted on two types of stabilized soil after 28 days of curing. Multiple nonlinear regression (MNLR) analysis was used to evaluate the relationship between the compressive strength and the electrical resistivity in terms of the rCB, Cu (uniformity coefficient), and w/c ratio. The results showed that the w/c ratio and Cu have a strong influence on the compressive strength and electrical resistivity of the cement stabilized soil compared to the rCB content. The use of a small amount of rCB led to a decrease in the void space in the specimen and was attributed to the increase strength and decrease electrical resistivity. A high w/c ratio also induced a low electrical resistivity and compressive strength, whereas 3% rCB in the cemented soil provided the optimum strength for all w/c ratios. Finally, a prediction equation for the compressive strength using the electrical resistivity measurement was suggested based on its reliability, time effectiveness, non-destructiveness, and cost-effectiveness.

The Study on Earlier Evaluation of Concrete Strength Using Ultra Sonic Velosity Method (초음파 시험에 의한 콘크리트의 조기 강도 판정에 관한 연구)

  • 김화중;이도헌;윤상천;박정민;최신호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.136-141
    • /
    • 1995
  • The early evaluation on strength of concrete is useful to achieve on quality control and improvement of properties of concrete. Especially, we could say that the confidence of construction is increased by the increase durability and safety building, due to early evaluation. In this study, was proposed to ultra-sonic pulse method as a early evaluation method for strength of concrete with main parameter, sush as W/C ratio and S/A ratio. The experiment results are summarized to follow as : $\circled1$ The ultra-sonic pulse was decreased as the increase of W/C ratio. $\circled2$ The maximum value for the ultra-sonic pulse velocity and compressive strength was presented in the case of 40% S/A ratio and these value was decreased as the change of S/A ratio over 40% $\circled1$ The relationship of the ultra-sonic pulse velocity and compressive strength on 28days according to the change of W/C and S/A ratio is to be: $F_{28} = -209193R^2 + 384417R - 1763441$(W/C Ratio) $F_{28} = 1726R^2 - 774R - 502 (S/A Ratio)

  • PDF

Strength Characteristics according to the mixed CaO/$SiO_2$ Ratio to Autoclaved Aerated Concrete(AAC) used on the Exterior Panel in Buildings (건물 외벽 패널용 경량기포콘크리트(AAC)의 CaO/$SiO_2$ 혼합비에 따른 강도 특성 평가)

  • Kim, Young-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.3
    • /
    • pp.35-42
    • /
    • 2011
  • The exterior system of buildings, which is the typical curtain wall, has been made with glass and metal. Theses materials, however, have weaknesses such as inadequate insulating quality, short durability, combustibility and toxic substance. On the other hand, Autoclaved Aerated Concrete(AAC) or Autoclaved Lightweight Concrete(ALC) possess the great energy efficiency and the superb insulating quality as substitute of existing exterior system materials. In this research, strength characteristics and bubble dispersion of hydrothermal synthesis process of AAC based on CaO/$SiO_2$(C/S) ratio are analyzed. C/S ratio is determinated and bubble distribution and compressive strength are studied through the test of varied water-to-solid mineral ratio(W/S). In hydrothermal synthesis program, final C/S ratio is determined as 0.7 consider of the manufacturing process and hydrothermal synthesis is done at $180^{\circ}C$ for 7 hours. The analysis shows slurry has about 2,300cP viscosity and 0.56 specific gravity therefore it is expected AAC has the appropriate facility in the manufacturing process and Hydrates of AAC's Expansion.

Influences of Water to Cement Ratio and Chemical Admixtures on the Quality of Inter-Locking Block (인터로킹 블록의 품질에 미치는 물시멘트비와 화학혼화제의 영향)

  • 이상태;김기철;신병철;김진선;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.157-160
    • /
    • 1998
  • KS F 4419, which is dealt with the Inter-Locking block, states that water to cement ratio for manufacturing inter-locking block should be less than 25% and in KS F4419, the use of admixture is shown to be reluctant to recommend. In this paper, reinvestigation of some regulations in KS F 4419 are carried out. According to the experimental results, as W/C increases, flexural strength and compressive strength are tended to decrease, whereas they increases within certain range, Flexural strength and compressive strength have higher values in 1:2(W/C=35%), 1:4(W/C=45%) and 1:6(W/C=55%) of mix proportions. Moreover they have rather higher values with the containment of high range AE water-reducing agent. The absorption ratios decrease with the increase of W/C and the containment of high range AE water-reducing agent. Therefore, the regulations on the W/C and admixture in KS F 4419 reguire revision.

  • PDF