• Title/Summary/Keyword: Vulnerability analysis

Search Result 1,273, Processing Time 0.035 seconds

Factors Affecting the Intention to Adopt Self-Determination Rights of Personal Medical Information (개인의료정보 자기결정권 행사 의도에 영향을 미치는 요인)

  • Yunmo Koo;Sungwoo Hong;Beomsoo Kim
    • Information Systems Review
    • /
    • v.20 no.1
    • /
    • pp.159-177
    • /
    • 2018
  • With an extensive proliferation of information and communication technology, the volume and amount of digital information collected and utilized on the Internet have been increasing rapidly. Also on the rapid rise are side effects such as unintended breach of accumulated personal information and consequent invasion of personal privacy. Informational self-determination is rarely practiced, despite various states' legal efforts to redress data subjects' damage. Personal health information, in particular, is a subcategory of personal information where informational self-determination is hardly practiced enough. The observation is contrasted with the socio-economic inconvenience that may follow due to its sensitive nature containing individuals' physical and health conditions. This research, therefore, reviews factors of self-determination on personal health information while referring to the protection motivation theory (PMT), the long-time framework to understand personal information protection. Empirical analysis of 200 data surveyed reveals threat-appraisal (perceived vulnerability and perceived severity of threats) and coping-appraisal (perceived response effectiveness), in addition to individual levels of concern regarding provided personal health information, influence self-determination to protect personal health information. The research proposes theoretical findings and practical suggestions along with reference for future research topics.

Management Guidelines and the Structure of Vegetation in Natural Monuments Koelreuteria Paniculata Community (천연기념물 모감주나무군락의 식생구조와 관리제언)

  • Shin, Byung Chul;Lee, Won Ho;Kim, Hyo Jeong;Hong, Jeum Kyu
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.100-117
    • /
    • 2010
  • This study analyzed vegetation structure of natural monuments Koelreuteria paniculata community in search of a conservation and management plan. Plant sociological analysis of Koelreuteria paniculata community indicates that it can be classified into Achyranthes japonica subcommunity and Rhodotypos scandens subcommunity and Trachelospermum asiaticum var. intermedium subcommunity. While Koelreuteria paniculata community of Ahnmyeondo is composed of sub tree layer and herb layer, those of Pohang and Wando are composed of tree layer, Sub tree layer, shrub layer, herb layer. The results of tree vitality analysis showed that those in Ahnmyeondo appeared to be relatively low when compared to those in Pohang and Wando-gun. This can be understood in two different aspects: disease and insects vulnerability due to a relatively simple structure and lack of competitive species, and decreased vitality / natural branch losses due to crown competition arising from high density. The result of soil characteristics analysis showed that soil texture, soil pH, organic matter, $p_2O_5$, exchange positive ion were sufficient for tree growth while total nitrogen was not, so that discretion would be needed for fertilizer application. As there were damages of disease and inscet, but only for 10~15% of the entire area; it still requires consistent preconsideration. The study suggests the management methods for preservation of Koelreuteria paniculata community. First, securing designated areas is necessary in order to minimize environment deterioration due to surrounding development. Especially, for sections with decreased areas, expansion of designated areas through land purchase should also be considered. Second, artificial interference may affect the livestock. Therefore, monitoring of artificial interference is necessary, based on which protection projects must be conducted. Third, from analysis of young plants which influence the maintenance mechanisms of Koelreuteria paniculata community, a decrease compared to the prior year was observed; investigation is needed. Therefore, an active management policy through status examination of livestock such as germination and young plants is necessary.

Effects of Impact of Climate Change on Livestock Productivity - For bullocks, dairy, pigs, laying hens, and broilers - (기후변화가 축산 생산성에 미치는 영향 -거세우, 낙농, 양돈, 산란계, 육계를 대상으로-)

  • Lee, H.K.;Park, H.M.;Shin, Y.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.1
    • /
    • pp.107-123
    • /
    • 2018
  • The global impact of climate change on agriculture is now increasing. The purpose of this study was to investigate the effect of climate change on livestock productivity. The variables that have the greatest influence on climate change factors were examined through previous studies and expert surveys. We also used the actual productivity data of livestock farmers to investigate the relationship with climate change. In order to evaluate the climate for changes in livestock productivity, national representative data (such as bullocks, dairy, pigs, laying hens, and broilers) were surveyed in Korea. Also, to select and classify evaluation indexes, we selected climate change factor variables as prior studies and studied the weighting factor of climate variable factors. In this study, the researchers of industry, academia, and farmers in the livestock sector conducted questionnaires on the indicators of vulnerability to climate change using experts, and then weighed the selected indicators using the hierarchical analysis process (AHP). In order to verify the validity of the evaluation index, was examined using domestic climate data (temperature, precipitation, humidity, etc.). Correlation and regression analysis were performed. The empirical relationship between climate change and livestock productivity was examined through this study. As a result, we used data with high reliability of statistical analysis and found that there are significant variables.

An Experimental and Numerical Study on the Survivability of a Long Pipe-Type Buoy Structure in Waves (긴 파이프로 이뤄진 세장형 부이 구조물의 파랑 중 생존성에 관한 모형시험 및 수치해석 연구)

  • Kwon, Yong-Ju;Nam, Bo-Woo;Kim, Nam-Woo;Park, In-Bo;Kim, Sea-Moon
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.427-436
    • /
    • 2018
  • In this study, experimental and numerical analysis were performed on the survivability of a long pipe-type buoy structure in waves. The buoy structure is an articulated tower consisting of an upper structure, buoyancy module, and gravity anchor with long pipes forming the base frame. A series of experiment were performed in the ocean engineering basin of KRISO with the scaled model of 1/ 22 to evaluate the survivability of the buoy structure at West Sea in South Korea. Survival condition was considered as the wave of 50 year return period. Additional experiments were performed to investigate the effects of current and wave period. The factors considered for the evaluation of the buoy's survival were the pitch angle of the structure, anchor reaction force, and the number of submergence of the upper structure. Numerical simulations were carried out with the OrcaFlex, the commercial program for the mooring analysis, with the aim of performing mutual validation with the experimental results. Based on the evaluation, the behavior characteristics of the buoy structure were first examined according to the tidal conditions. The changes were investigated for the pitch angle and anchor reaction force at HAT and LAT conditions, and the results directly compared with those obtained from numerical simulation. Secondly, the response characteristics of the buoy structure were studied depending on the wave period and the presence of current velocity. Third, the number of submergence through video analysis was compared with the simulation results in relation to the submergence of the upper structure. Finally, the simulation results for structural responses which were not directly measured in the experiment were presented, and the structural safety discussed in the survival waves. Through a series of survivability evaluation studies, the behavior characteristics of the buoy structure were examined in survival waves. The vulnerability and utility of the buoy structure were investigated through the sensitivity studies of waves, current, and tides.

Evaluation of Health Impact of Heat Waves using Bio-Climatic impact Assessment System (BioCAS) at Building scale over the Seoul City Area (생명기후분석시스템(BioCAS)을 이용한 폭염 건강위험의 검증 - 서울시 건물규모를 중심으로 -)

  • Kim, Kyu Rang;Lee, Ji-Sun;Yi, Chaeyeon;Kim, Baek-Jo;Janicke, Britta;Holtmann, Achim;Scherer, Dieter
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.514-524
    • /
    • 2016
  • The Bio-Climatic impact Assessment System, BioCAS was utilized to produce analysis maps of daily maximum perceived temperature ($PT_{max}$) and excess mortality ($r_{EM}$) over the entire Seoul area on a heat wave event. The spatial resolution was 25 m and the Aug. 5, 2012 was the selected heat event date. The analyzed results were evaluated by comparing with observed health impact data - mortality and morbidity - during heat waves in 2004-2013 and 2006-2011,respectively. They were aggregated for 25 districts in Seoul. Spatial resolution of the comparison was equalized to district to match the lower data resolution of mortality and morbidity. Spatial maximum, minimum, average, and total of $PT_{max}$ and $r_{EM}$ were generated and correlated to the health impact data of mortality and morbidity. Correlation results show that the spatial averages of $PT_{max}$ and $r_{EM}$ were not able to explain the observed health impact. Instead, spatial minimum and maximum of $PT_{max}$ were correlated with mortality (r=0.53) and morbidity (r=0.42),respectively. Spatial maximum of $PT_{max}$, determined by building density, affected increasing morbidity at daytime by heat-related diseases such as sunstroke, whereas spatial minimum, determined by vegetation, affected decreasing mortality at nighttime by reducing heat stress. On the other hand, spatial maximum of $r_{EM}$ was correlated with morbidity (r=0.52) but not with mortality. It may have been affected by the limit of district-level irregularity such as difference in base-line heat vulnerability due to the age structure of the population. Areal distribution of the heat impact by local building and vegetation, such as spatial maximum and minimum, was more important than spatial mean. Such high resolution analyses are able to produce quantitative results in health impact and can also be used for economic analyses of localized urban development.

Study on the structure of the articulation jack and skin plate of the sharp curve section shield TBM in numerical analysis (수치해석을 통한 급곡선 구간 Shield TBM의 중절잭 및 스킨플레이트 구조에 관한 연구)

  • Kang, Sin-Hyun;Kim, Dong-Ho;Kim, Hun-Tae;Song, Seung-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.421-435
    • /
    • 2017
  • Recently, due to the saturation of ground structures and the overpopulation of pipeline facilities requires to development of underground structures as an alternative to ground structures. Thus, mechanized tunnel construction of the shield TBM method has been increasing in order to prevent vibration and noise problems in construction of the NATM tunnel for the urban infrastructure construction. Tunnel construction plan for the tunnel line should be formed in a sharp curve to avoid building foundation and underground structures and it is inevitable to develop a shield TBM technology that suits the sharp curve tunnel construction. Therefore, this study is about the structural stability technology of the articulation jack, shield jack and skin plate for the shield TBM thrust in case of the mechanized tunnel construction that is a straight and sharp curve line. The construction case study and shield TBM operation principle are examined and analyzed by the theoretical approach. The torque of the cutter head, the thrust of the articulation jack and the shield jack, the amount of over cutting for curve is important respectively in shield TBM construction of straight and sharp curve line. In addition, it is very important to secure the stability of the skin plate structure to ensure the safety of the inside worker. This study examines the general structure and construction of the equipment, experimental simulation was carried out through numerical analysis to examine the main factors and structural stability of the skin plate structure. The structural stability of the skin plate was evaluated and optimizes the shape by comparing the loads of the articulation jack by selecting the virtual soil to be applied in a straight and sharp curve line construction. Since the present structure and operation method of the shield TBM type in domestic constructions are very similar, this study will help to develop the localized shield TBM technology for the new equipment and the vulnerability and stability review.

Evaluation of the Color-change and Stability of Hoecheong (Smalt) Pigments When Exposed to Airborne Environmental Pollutants (회청 안료의 보존 환경에 따른 안정성 평가)

  • PARK, Juhyun;LEE, Sunmyung;KIM, Myoungnam
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.4
    • /
    • pp.22-35
    • /
    • 2021
  • Recently, as the climate changes rapidly and the prevalence of airborne fine particulate matter increases, the pattern of pollutants in the atmospheric environment is also changing. Therefore, the importance of studying the stability of pigments used in colored cultural properties is emerging. Hoecheong is an inorganic blue glass pigment called smalt; it is made by using cobalt as a coloring element in potash glass, and was widely used in colored cultural assets, such as murals and paintings. In this study, we collected three other hoecheong pigments to analyze their properties. The percentage of Co and K contained are different according to the manufacturer, and the smalt-3 sample has a lower cobalt content (15.1 wt.%) and higher potassium content (29.6 wt.%). After this analysis, colored specimens were prepared. Prepared specimens were exposed to ultra-violet rays, CO2/NO2, and NaCl, which are known to have the greatest influence on the stability of pigments. We found that factors affecting the color stability were NO2 gas, ultra-violet rays, and water-soluble salts (NaCl). Among them, NO2 has the most severe impact on color change of the pigments. Results of the component analysis showed that the color change depends on the potassium and cobalt content of the hoecheong pigment. Among the specimens, smalt-3 showed the most vulnerability after exposure to NO2 gas and water-soluble salts. Pigment film stability is affected by watersoluble salts, giving rise not only to color change, but also weakening the physical properties of the film. However, there was no significant change in composition and color after exposure to CO2 gas. In conclusion, we found that hoecheong pigments underwent color change and increased instability of the coating film when exposed to any of the atmospheric environmental factors used in this study, except for CO2.

A Study on the Development of Assessment Index for Catastrophic Incident Warning Sign at Refinery and Pertrochemical Plants (정유 및 석유화학플랜트 중대사고 전조신호 평가지표 개발에 관한 연구)

  • Yun, Yong Jin;Park, Dal Jae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.637-651
    • /
    • 2019
  • In the event of a major accident such as an explosion in a refinery or a petrochemical plant, it has caused a serious loss of life and property and has had a great impact on the insurance market. In the case of catastrophic incidents occurring in process industries such as refinery and petrochemical plants, only the proximate causes of loss have been drawn and studied from inspectors or claims adjustors responsible for claims of property insurers, incident cause investigators, and national forensic service workers. However, it has not been done well for conducting root cause analysis (RCA) and identifying the factors that contributed to the failure and establishing preventive measures before leading to chemical plant's catastrophic incidents. In this study, the criteria of warning signs on CCPS catastrophic incident waning sign self-assessment tool which was derived through the RCA method and the contribution factor analysis method using the swiss cheese model principle has been reviewed first. Secondly, in order to determine the major incident warning signs in an actual chemical plant, 614 recommendations which have been issued during last the 17 years by loss control engineers of global reinsurers were analyzed. Finally, in order to facilitate the assessment index for catastrophic incident warning signs, the criteria for the catastrophic incident warning sign index at chemical plants were grouped by type and classified into upper category and lower category. Then, a catastrophic incident warning sign index for a chemical plant was developed using the weighted values of each category derived by applying the analytic hierarchy process (pairwise comparison method) through a questionnaire answered by relevant experts of the chemical plant. It is expected that the final 'assessment index for catastrophic incident warning signs' can be utilized by the refinery and petrochemical plant's internal as well as external auditors to assess vulnerability levels related to incident warning signs, and identify the elements of incident warning signs that need to be tracked and managed to prevent the occurrence of serious incidents in the future.

A Study of Life Safety Index Model based on AHP and Utilization of Service (AHP 기반의 생활안전지수 모델 및 서비스 활용방안 연구)

  • Oh, Hye-Su;Lee, Dong-Hoon;Jeong, Jong-Woon;Jang, Jae-Min;Yang, Sang-Woon
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.864-881
    • /
    • 2021
  • Purpose: This study aims is to provide a total care solution preventing disaster based on Big Data and AI technology and to service safety considered by individual situations and various risk characteristics. The purpose is to suggest a method that customized comprehensive index services to prevent and respond to safety accidents for calculating the living safety index that quantitatively represent individual safety levels in relation to daily life safety. Method: In this study, we use method of mixing AHP(Analysis Hierarchy Process) and Likert Scale that extracted from consensus formation model of the expert group. We organize evaluation items that can evaluate life safety prevention services into risk indicators, vulnerability indicators, and prevention indicators. And We made up AHP hierarchical structure according to the AHP decision methodology and proposed a method to calculate relative weights between evaluation criteria through pairwise comparison of each level item. In addition, in consideration of the expansion of life safety prevention services in the future, the Likert scale is used instead of the AHP pair comparison and the weights between individual services are calculated. Result: We obtain result that is weights for life safety prevention services and reflected them in the individual risk index calculated through the artificial intelligence prediction model of life safety prevention services, so the comprehensive index was calculated. Conclusion: In order to apply the implemented model, a test environment consisting of a life safety prevention service app and platform was built, and the efficacy of the function was evaluated based on the user scenario. Through this, the life safety index presented in this study was confirmed to support the golden time for diagnosis, response and prevention of safety risks by comprehensively indication the user's current safety level.

Autonomic Nervous Response of Female College Students with Type D Personality during an Acute Stress Task: Heart Rate Variability (Type D 성격 여대생의 급성 스트레스에 따른 자율신경계 반응 : 심박률 변동성을 중심으로)

  • Ko, Seon-Young;Kim, Myung-Sun
    • Korean Journal of Health Psychology
    • /
    • v.14 no.2
    • /
    • pp.277-292
    • /
    • 2009
  • This study investigated the responses of the autonomic nervous system of individuals with Type D personality during an acute stressful situation. Twenty-three female students of Type D personality and 23 female students with non-Type D personality. Stroop Color-Word Task was used to induce a stressful situation, heart rate variability (HRV) was used to measure the responses of the autonomic nervous system during the baseline, acute stress, recovery periods. To analyze the data, the repeated measures analysis of variance was used to compare the autonomic nervous system of the Type D group to that of the non-Type D group. Regression analysis is used to determine if the Type D scale and stress vulnerability predicted the activities of the autonomic nervous system during the baseline period. The results of this study demonstrated that the Type D group's normalized low frequency (LF norm) and ratio of low frequency to high frequency (LF/HF ratio) were higher than those for the non-Type D group, while its normalized high frequency (HF norm) was lower than that for the non-Type D group in all three periods. There were no statistically significant differences among the three periods in terms of LF norm, HF norm, and LF/HF ratio in the Type D group. The study demonstrated that the total scores of the Type DS-14 and scores of social inhibition and negative affect were independent predictors of LF norm and HF norm during the baseline. The Type D group showed increased activation of the sympathetic nervous system and/or decreased activation of the parasympathetic nervous system. These results support the hypothesis that the Type D personality is vulnerable to the stress. Also, the highly activated sympathetic and/or lowly activated parasympathetic nervous systems, which were observed in the Type D group during the baseline, indicated that the Type D individual is susceptible to psychosomatic disorders.