• Title/Summary/Keyword: Vulnerability Assessment System

Search Result 192, Processing Time 0.025 seconds

A study on the cyber security assessment modeling of critical infrastructure (핵심기반시설 사이버 보안 평가 모델링 기법 연구)

  • Euom, Ieck-Chae
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.105-113
    • /
    • 2019
  • The purpose of this study is to analyze cyber security risk modeling of critical infrastructure, draw out limitations and improvement measures. This paper analyzed cyber security risk modeling of national critical infrastructure like as electricity sector, nuclear power plant, SCADA. This paper analyzed the 26 precedent research cases of risk modeling in electricity sector, nuclear power plant, SCADA. The latest Critical Infrastructure is digitalized and has a windows operating system. Critical Infrastructure should be operated at all times, it is not possible to patch a vulnerability even though find vulnerability. This paper suggest the advanced cyber security modeling characteristic during the life cycle of the critical infrastructure and can be prevented.

A New Evaluation Model for Natural Attenuation Capacity of a Vadose Zone Against Petroleum Contaminants (유류 오염물질에 대한 불포화대 자연 저감능 등급화 기법 개발)

  • Woo, Heesoo;An, Seongnam;Kim, Kibeum;Park, Saerom;Oh, Sungjik;Kim, Sang Hyun;Chung, Jaeshik;Lee, Seunghak
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.92-98
    • /
    • 2022
  • Although various methods have been proposed to assess groundwater vulnerability, most of the models merely consider the mobility of contaminants (i.e., intrinsic vulnerability), and the attenuation capacity of vadose zone is often neglected. This study proposed an evaluation model for the attenuation capacity of vadose zone to supplement the limitations of the existing index method models for assessing groundwater vulnerability. The evaluation equation for quantifying the attenuation capacity was developed from the combined linear regression and weighted scaling methods based on the lab-scale experiments using various vadose zone soils having different physical and biogeochemical properties. The proposed semi-quantifying model is expected to effectively assess the attenuation capacity of vadose zone by identifying the main influencing factors as input parameters together with proper weights derived from the coefficients of the regression results. The subsequent scoring and grading system has great versatility while securing the objectivity by effectively incorporating the experimental results.

Applied methods for seismic assessment of scoured bridges: a review with case studies

  • Guo, Xuan;Badroddin, Mostafa;Chen, ZhiQiang
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.497-507
    • /
    • 2017
  • Flooding induced scour has been long recognized as a major hazard to river-crossing bridges. Many studies in recent years have attempted to evaluate the effects of scour on the seismic performance of bridges, and probabilistic frameworks are usually adopted. However, direct and straightforward insight about how foundation scour affects bridges as a type of soil-foundation-structure system is usually understated. In this paper, we provide a comprehensive review of applied methods centering around seismic assessment of scoured bridges considering soil-foundation-structure interaction. When introducing these applied analysis and modeling methods, a simple bridge model is provided to demonstrate the use of these methods as a case study. Particularly, we propose the use of nonlinear modal pushover analysis as a rapid technique to model scoured bridge systems, and numerical validation and application of this procedure are given using the simple bridge model. All methods reviewed in this paper can serve as baseline components for performing probabilistic vulnerability or risk assessment for any river-crossing bridge system subject to flood-induced scour and earthquakes.

Fragility assessment for electric cabinet in nuclear power plant using response surface methodology

  • Tran, Thanh-Tuan;Cao, Anh-Tuan;Nguyen, Thi-Hong-Xuyen;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.894-903
    • /
    • 2019
  • An approach for collapse risk assessment is proposed to evaluate the vulnerability of electric cabinet in nuclear power plants. The lognormal approaches, namely maximum likelihood estimation and linear regression, are introduced to establish the fragility curves. These two fragility analyses are applied for the numerical models of cabinets considering various boundary conditions, which are expressed by representing restrained and anchored models at the base. The models have been built and verified using the system identification (SI) technique. The fundamental frequency of the electric cabinet is sensitive because of many attached devices. To bypass this complex problem, the average spectral acceleration $S_{\bar{a}}$ in the range of period that cover the first mode period is chosen as an intensity measure on the fragility function. The nonlinear time history analyses for cabinet are conducted using a suite of 40 ground motions. The obtained curves with different approaches are compared, and the variability of risk assessment is evaluated for restrained and anchored models. The fragility curves obtained for anchored model are found to be closer each other, compared to the fragility curves for restrained model. It is also found that the support boundary conditions played a significant role in acceleration response of cabinet.

Analysis of Problems of Water Supply Capacity Determination in Water Resources Systems (수자원시스템의 용수공급량 결정방법의 문제점 분석)

  • Lee, Gwang-Man;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.331-342
    • /
    • 2014
  • In water resources planning, to decide proper water supply capacity is a very important task. Once water supply system such as a dam is decided, it will affect whole range of water resources circumstances for a long time. Even though systematic approaches have been implemented since 1980, many problems are still prevail in reality. Especially some issues related to the reliability analysis method used in planning dams in Korea have been persistently brought up. This study is to diagnose problems on the reliability criterion in water supply capacity assessment of water resources systems and discuss a valid method. As a result, the estimates by the different analysis time intervals, in case of the temporal reliability, show no large difference, but there is a large difference when assessment time intervals are differently applied. The volumetric reliability accounts for 2~3% higher than that of the temporal reliability, and resiliency and vulnerability also show large differences by the analysis time intervals.

Decision Support System for the Water Supply System in Fukuoka, Japan

    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.15-24
    • /
    • 2001
  • This study introduces an integrated decision support system (DSS) for the water supply system in Fukuoka City, Japan. The objective is to conceive a comprehensive tool that may aid decision-makers to derive the best water supply alternatives from a multi-reservoir system in order to minimize the long-term drought damages and threat of water shortage. The present DSS consists of graphical user interface (GUI), a database manager, and mathematical models for runoff analysis, water demand forecasting, and reservoir operation. The methodology applied explicitly integrates the drought risk assessment based on the concept of reliability, resiliency, and vulnerability, as constraints to derive the management operation. The application of the DSS to the existing water supply system in Fukuoka City was found to be an efficient tool to facilitate the examination of a sequence of water supply scenarios toward an improved performance of the actual water supply system during periods of drought.

  • PDF

Towards Cyber Security Risks Assessment in Electric Utility SCADA Systems

  • Woo, Pil Sung;Kim, Balho H.;Hur, Don
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.888-894
    • /
    • 2015
  • This paper presents a unified model based assessment framework to quantify threats and vulnerabilities associated with control systems, especially in the SCADA (Supervisory Control and Data Acquisition) system. In the past, this system was primarily utilized as an isolated facility on a local basis, and then it started to be integrated with wide-area networks as the communication technology would make rapid progress. The introduction of smart grid, which is an innovative application of digital processing and communications to the power grid, might lead to more and more cyber threats originated from IT systems. However, an up-to-date power system often requires the real-time operations, which clearly implies that the cyber security would turn out to be a complicated but also crucial issue for the power system. In short, the purpose of this paper is to streamline a comprehensive approach to prioritizing cyber security risks which are expressed by the combination of threats, vulnerabilities, and values in the SCADA components.

Structural Analysis and Derivation of Vulnerability for BlockChain based System (블록체인 기반 시스템의 구조적 분석과 취약점 도출)

  • Kim, Jang-Hwan
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.115-121
    • /
    • 2019
  • I analyzed the structure of a block-chain system and a block-chain-based service system. It is a decentralized book encryption system software technology that does not require a third party to secure trust between the two parties. Block chains are structured in a linked list structure. The block chain manage transaction information by blocking the transaction information, in conjunction with other blocks. As a result, I have discovered structural weaknesses in current block-chain systems and block-chain-based service systems. Once these possible structural problems are resolved, I expect that the block-chain-based service system will make various industrial contributions.

A Study of the Mitigating Effect Comparison of Voltage Sags by WTG Types Based on the Concept of Area of Vulnerability (타입별 풍력 발전기 설치에 따른 민감 부하의 순간전압강하 저감 효과 비교 분석 연구)

  • Park, Se-Jun;Yoon, Min-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1682-1688
    • /
    • 2017
  • In modern society, the number of industrial customers using equipment sensitive particularly to voltage sags is rapidly increasing. As voltage sags can cause loss of information as well as false operation of the control device, it results in the vast economic damage in industrial processes. One way to mitigate voltage sags in the sensitive loads is the installation of distributed generation (DGs) on the periphery of these loads. In addition, renewable energy sources are currently in the spot light as the potential solution for the energy crisis and environmental issues. In particular, wind power generation which is connected to a grid is rising rapidly because it is energy efficient and also economically feasible compared to other renewable energy sources. On the basis of the above information, in this paper, with Wind Turbine Generators (WTGs) installed nearby the sensitive load, the analysis of the mitigating effect comparison by types of WTGs is performed using voltage sag assessment on the IEEE-30 bus test system. That is, the areas of vulnerability according to types of WTGs are expected to be different by how much reactive power is produced or consumed as WTG reactive power capability is related to the types of WTGs. Using the concept of 'Vulnerable area' with the failure rate for buses and lines, the annual number of voltage sags at the sensitive load with the installation of WTGs per type is studied. This research will be anticipated to be useful data when determining the interconnection of wind power generation in the power system with the consideration of voltage sags.

A Review and Analysis of Earthquake Disaster Risk Assessment Tools and Applications (지진 재해 위험도 평가 분석 도구 사례 분석 연구)

  • Chai, Su-Seong;Suh, Dongjun
    • Journal of Digital Contents Society
    • /
    • v.19 no.5
    • /
    • pp.899-906
    • /
    • 2018
  • In the entire process of disaster management, it is very significant to construct related information as well as perform quantitative assessment of damage losses with respect to minimizing the effect of disasters. Many countries have paid much attention not only to studying risk assessment methodologies including constructing inventories, hazard mapping, vulnerability assessment and direct/indirect damage loss estimation, but also to developing risk analysis tools investigated in this paper. We conducted comparison studies of representative earthquake damage risk analysis tools, and the result of this study is able to provide useful information to decision makers and researchers who can contribute to development of effective disaster management.