• Title/Summary/Keyword: Vulnerability Analysis Index

Search Result 133, Processing Time 0.02 seconds

A Study on the Vulnerability Assessment for Agricultural Infrastructure using Principal Component Analysis (주성분 분석을 이용한 농업생산기반의 재해 취약성 평가에 관한 연구)

  • Kim, Sung Jae;Kim, Sung Min;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The purpose of this study was to evaluate climate change vulnerability over the agricultural infrastructure in terms of flood and drought using principal component analysis. Vulnerability was assessed using vulnerability resilience index (VRI) which combines climate exposure, sensitivity, and adaptive capacity. Ten flood proxy variables and six drought proxy variables for the vulnerability assessment were selected by opinions of researchers and experts. The statistical data on 16 proxy variables for the local governments (Si, Do) were collected. To identify major variables and to explain the trend in whole data set, principal component analysis (PCA) was conducted. The result of PCA showed that the first 3 principal components explained approximately 83 % and 89 % of the total variance for the flood and drought, respectively. VRI assessment for the local governments based on the PCA results indicated that provinces where having the relatively large cultivation areas were categorized as vulnerable to climate change.

Vulnerability Assessment and Analysis of Gangwon Provincial Forest Sector in Response to Climate Change (기후변화 대비 강원 지역 산림부문 현황 분석 및 취약성 평가)

  • Chae, Hee-Mun;Lee, Hyun-Ju;Um, Gi-Jeung
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.2
    • /
    • pp.106-117
    • /
    • 2012
  • In an effort to analyze the impact of climate change, Gangwon provincial forest was divided into three sectors; forest ecology, forest disaster, and forest productivity and analysis of their current status from 2000 to 2009 and vulnerability assessment by climate change has been carried in this study. In case of vulnerability assessment, except for the forest ecology, forest disaster (forest fires and forest pests) and forest productivity sectors were analyzed in current status, the year of 2020, and 2050. It turned out that vulnerability of forest fires in the field of disaster would become worse and forest pests also would make more impact even though there is some variation in different areas. In case of the vulnerability of forest productivity there would be not a big difference in the future compared with current vulnerability. Systematic research on the sensitivity index used for vulnerability assessment is necessary since vulnerability assessment result greatly depends on the use of climate exposure index and adaptive capacity index.

Seismic damage vulnerability of empirical composite material structure of adobe and timber

  • Si-Qi Li
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.429-442
    • /
    • 2023
  • To study the seismic vulnerability of the composite material structure of adobe and timber, we collected and statistically analysed empirical observation samples of 542,214,937 m2 and 467,177 buildings that were significantly impacted during the 179 earthquakes that occurred in mainland China from 1976 to 2010. In multi-intensity regions, combined with numerical analysis and a probability model, a non-linear continuous regression model of the vulnerability, considering the empirical seismic damage area (number of buildings) and the ratio of seismic damage, was established. Moreover, a probability matrix model of the empirical seismic damage mean value was provided. Considering the coupling effect of the annual and seismic fortification factors, an empirical seismic vulnerability curve model was constructed in the multiple-intensity regions. A probability matrix model of the mean vulnerability index (MVI) was proposed, and was validated through the above-mentioned reconnaissance sample data. A matrix model of the MVI of the regions (19 provinces in mainland China) based on the parameter (MVI) was established.

Development and Application of Vulnerability Analysis Index for River Levee (하천 제방의 취약성 분석 지수 개발 및 적용)

  • Lee, Hoosang;Lee, Jaejoon
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.134-140
    • /
    • 2019
  • In this study, we propose a new method for evaluating the vulnerability to flooding river levee. The purpose of this study is to examine how to apply the factors necessary to calculate the proposed levee flood index. To do this, the safety flood level was analyzed by applying the planned flood level. The levee flood vulnerabilities index was calculated based on seven factors such as freeboard, levee crown section, levee section ratio, safety factor, raised spot length, Seepage line change degree, and critical velocity. The Levee Flood Vulnerability Index(LFVI) of the levee developed in this study was used to levee vulnerability analysis. The results of the analysis were divided into 1 to 7 grades using Levee Flood Vulnerability Index(LFVI).

Development of Internet Vulnerability Index for Youth through Internet Overdependency Analysis (인터넷 과의존 요인분석을 통한 청소년의 인터넷 취약성 지수 개발)

  • Jung, Nam-Su;Choi, Myeong-Ok;Lee, Young-Sun;Ahn, Hu-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.4
    • /
    • pp.345-358
    • /
    • 2019
  • The purpose of this study is to develop the Internet vulnerability index of adolescents. To do this, we used the original data of long - term follow - up survey for the internet overdependency cause analysis conducted by NIA in 2018, and analyzed the correlation between alternatives of internet vulnerability index and personal psychology by using linear regression analysis. Factor analysis showed that the relationship with the surroundings was indexed by adding 9 items to positive factors such as family acceptance, peer attachment, and teacher favorability. The relationship between the surroundings and self - stigmatization is confirmed, and the relationship between the surroundings and the Internet fragility is predicted to be negatively related, and the digital capacity is also assumed to be negatively correlated with the Internet vulnerability. In order to develop the specific form of the Internet vulnerability index, personal psychology and linear regression analysis were conducted. As a result, positive factors and R value of personal psychology were increased when considering the relationship with the environment and the digital capacity rather than the Internet overdependency model. Based on these implications, we discussed the implications and limitations of this study.

Analysis of Disaster Vulnerable Districts using Heavy Rainfall Vulnerability Index (폭우 취약성 지표를 활용한 재해취약지구 분석)

  • PARK, Jong-Young;LEE, Jung-Sik;LEE, Jin-Deok;LEE, Won-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.12-22
    • /
    • 2018
  • In order to improve the vulnerability of current cities due to climate change, the disaster vulnerability analysis manual for various disasters is provided. Depending on the spatial units, the disaster vulnerability levels, and the conditions of the climatic factors, the results of the disaster vulnerability analysis will have a significant impact. In this study, relative assessments are conducted by adding the eup, myeon and dong unit in addition to census output area unit to analyze the impact on the spatial unit, and relative changes are analyzed according to the classification stages by expanding the natural classification, which is standardized at level four stage, to level two, four and six stage. The maximum rainfalls(10min, 60min, 24hr) are added for the two limited rainfall characteristics to determine the relativity of disaster vulnerable districts by index. The relative assessment results of heavy rainfall vulnerability index showed that the area ratio of disaster areas by spatial unit was different and the correlation analysis showed that the space analysis between the eup, myeon and dong unit in addition to census output area unit was not consistent. And it can be seen that the proportion of disaster vulnerable districts is relatively different a lot due to indexes of rainfall characteristics, spatial unit analysis and disaster vulnerability level stage. Based on the above results, it can be seen that the ratios of disaster vulnerable districts differ relatively significantly due to the level of the disaster vulnerability class, and the indexes of rainfall characteristics. This suggests that the impact of the disaster vulnerable districts depending on indexes is relatively large, and more detailed indexes should be selected when setting up the disaster vulnerabilities analysis index.

Analysis of Drought Characteristics in Gyeongbuk Based on the Duration of Standard Precipitation Index

  • Ahn, Seung Seop;Park, Ki bum;Yim, Dong Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.863-872
    • /
    • 2019
  • Using the Standard Precipitation Index (SPI), this study analyzed the drought characteristics of ten weather stations in Gyeongbuk, South Korea, that precipitation data over a period of 30 years. For the number of months that had a SPI of -1.0 or less, the drought occurrence index was calculated and a maximum shortage months, resilience and vulnerability in each weather station were analyzed. According to the analysis, in terms of vulnerability, the weather stations with acute short-term drought were Andong, Bonghwa, Moongyeong, and Gumi. The weather stations with acute medium-term drought were Daegu and Uljin. Finally the weather stations with acute long-term drought were Pohang, Youngdeok, and Youngju. In terms of severe drought frequency, the stations with relatively high frequency of mid-term droughts were Andong, Bonghwa, Daegu, Uiseong, Uljin, and Youngju. Gumi station had high frequency of short-term droughts. Pohang station had severe short-term ad long-term droughts. Youngdeok had severe droughts during all the terms. Based on the analysis results, it is inferred that the size of the drought should be evaluated depending on how serious vulnerability, resilience, and drought index are. Through proper evaluation of drought, it is possible to take systematic measures for the duration of the drought.

Assessment of seismic damage inspection and empirical vulnerability probability matrices for masonry structure

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke;Chi, Bo
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.387-399
    • /
    • 2022
  • To study the seismic damage of masonry structures and understand the characteristics of the multi-intensity region, according to the Dujiang weir urbanization of China Wenchuan earthquake, the deterioration of 3991 masonry structures was summarized and statistically analysed. First, the seismic damage of multistory masonry structures in this area was investigated. The primary seismic damage of components was as follows: Damage of walls, openings, joints of longitudinal and transverse walls, windows (lower) walls, and tie columns. Many masonry structures with seismic designs were basically intact. Second, according to the main factors of construction, seismic intensity code levels survey, and influence on the seismic capacity, a vulnerability matrix calculation model was proposed to establish a vulnerability prediction matrix, and a comparative analysis was made based on the empirical seismic damage investigation matrix. The vulnerability prediction matrix was established using the proposed vulnerability matrix calculation model. The fitting relationship between the vulnerability prediction matrix and the actual seismic damage investigation matrix was compared and analysed. The relationship curves of the mean damage index for macrointensity and ground motion parameters were drawn through calculation and analysis, respectively. The numerical analysis was performed based on actual ground motion observation records, and fitting models of PGA, PGV, and MSDI were proposed.

Sensitivity analysis of flood vulnerability index of levee according to climate change (기후변화에 따른 제방의 홍수취약성지수 민감도 분석)

  • Lee, Hoo Sang;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1161-1169
    • /
    • 2018
  • In this study, a new methodology was proposed to evaluate the flood vulnerability of river levee and to investigate the effect on the levee where the water level changes according to climate change. The stability of levee against seepage was evaluated using SEEP/W model which is two-dimensional groundwater infiltration model. In addition to the infiltration behavior, it is necessary to analyze the vulnerability of the embankment considering the environmental conditions of the river due to climate change. In this study, the levee flood vulnerability index (LFVI) was newly developed by deriving the factors necessary for the analysis of the levee vulnerability. The size of river levee was investigated by selecting the target area. The selected levees were classified into upstream part, midstream part and downstream part at the nearside of Seoul in the Han river, and the safety factor of the levee was analyzed by applying the design flood level of the levee. The safety ratio of the levee was analyzed by applying the design flood level considering the current flood level and the scenario of climate change RCP8.5. The degree of change resulting from climate change was identified for each factor that forms the levee flood vulnerability index. By using the levee flood vulnerability index value utilizing these factors comprehensively, it was finally possible to estimate the vulnerability of levee due to climate change.

The Impact of Environmental Health Factors on Extreme-heat Vulnerability Assessment in a Metropolitan City (환경보건적 요소가 도시 내 폭염 취약성 평가 결과에 미치는 영향 분석)

  • Lee, Won-Jung;Kang, Jae-Eun;Kim, Yoo-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.6
    • /
    • pp.492-504
    • /
    • 2013
  • Objectives: This analysis seeks to evaluate the impact of environmental health factors (EHF; e.g. hospital beds per capita, employees of medical institutions) on extreme-heat vulnerability assessment in Busan Metropolitan City during 2006-2010. Methods: According to the vulnerability concept suggested by the Intergovernmental Panel on Climate Change (IPCC), extreme-heat vulnerability is comprised of the categories of Exposure, Sensitivity, and Adaptive Capacity (including EHF). The indexes of the Exposure and Sensitivity categories indicate positive effects, while the Adaptive capacity index indicates a negative effect on extreme-heat vulnerability. Variables of each category were standardized by the re-scaling method, and then each regional relative vulnerability was computed with the vulnerability index calculation formula. Results: The extreme-heat vulnerability index (EVI) excepting EHF was much higher in urban areas than in suburban areas within the metropolitan area. When EHF was considered, the difference in the EVI between the two areas was reduced due to the increase of the Adaptive capacity index in urban areas. The low EVI in suburban areas was induced by a dominant effect of natural environmental factors (e.g. green area) within the Adaptive capacity category. Conclusions: To reduce the vulnerability to extreme heat in urban areas, which were more frequently exposed to extreme heat than others areas, public health and natural environments need to be improved in sensitive areas.